Last active
November 16, 2025 04:30
-
-
Save twni2016/5b18a97c66686cbddbff84e4bdc1b984 to your computer and use it in GitHub Desktop.
Install on Mila Cluster / Compute Canada
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| absl_py==2.1.0+computecanada | |
| asttokens==2.4.1+computecanada | |
| astunparse==1.6.3+computecanada | |
| black==24.4.2 | |
| causal-conv1d==1.4.0 | |
| certifi==2024.7.4 | |
| cffi==1.16.0+computecanada | |
| charset-normalizer==3.3.2 | |
| chex==0.1.86+computecanada | |
| click==8.1.7+computecanada | |
| cloudpickle==3.0.0+computecanada | |
| comm==0.2.2+computecanada | |
| contextlib2==21.6.0+computecanada | |
| contourpy==1.2.1+computecanada | |
| cycler==0.12.1+computecanada | |
| Cython==0.29.37 | |
| D4RL @ git+https://github.com/Farama-Foundation/d4rl@71a9549f2091accff93eeff68f1f3ab2c0e0a288 | |
| debugpy==1.8.1+computecanada | |
| decorator==5.1.1+computecanada | |
| dm_control==1.0.20 | |
| dm_env==1.6+computecanada | |
| dm_tree==0.1.8+computecanada | |
| docker-pycreds==0.4.0+computecanada | |
| einops==0.8.0+computecanada | |
| etils==1.7.0+computecanada | |
| exceptiongroup==1.2.1+computecanada | |
| executing==2.0.1+computecanada | |
| Farama_Notifications==0.0.4+computecanada | |
| fasteners==0.19+computecanada | |
| filelock==3.15.4 | |
| flatbuffers==20190709135844+computecanada | |
| fonttools==4.53.0+computecanada | |
| fsspec==2024.6.1+computecanada | |
| gast==0.6.0 | |
| gitdb==4.0.11+computecanada | |
| GitPython==3.1.43 | |
| glfw==1.12.0+computecanada | |
| google-pasta==0.2.0+computecanada | |
| GPUtil==1.4.0+computecanada | |
| grpcio==1.62.1+computecanada | |
| gym==0.23.1 | |
| gym_notices==0.0.8+computecanada | |
| gymnasium==0.29.1+computecanada | |
| h5py==3.11.0+computecanada | |
| huggingface_hub==0.23.4+computecanada | |
| idna==3.7 | |
| imageio==2.34.2 | |
| importlib_resources==6.4.0 | |
| ipdb==0.13.13 | |
| ipykernel==6.29.4+computecanada | |
| ipython==8.25.0+computecanada | |
| jax==0.4.30 | |
| jaxlib==0.4.28+cuda12.cudnn89.computecanada | |
| jedi==0.19.1+computecanada | |
| jinja2==3.1.4+computecanada | |
| joblib==1.4.2+computecanada | |
| jupyter_client==8.6.2+computecanada | |
| jupyter_core==5.7.2+computecanada | |
| keras==3.4.1 | |
| kiwisolver==1.4.5+computecanada | |
| labmaze==1.0.6+computecanada | |
| libclang==14.0.1+computecanada | |
| lxml==5.2.2+computecanada | |
| mamba-ssm==2.2.2 | |
| Markdown==3.6 | |
| markdown_it_py==3.0.0+computecanada | |
| MarkupSafe==2.1.5+computecanada | |
| matplotlib==3.9.0+computecanada | |
| matplotlib_inline==0.1.7+computecanada | |
| mdurl==0.1.2+computecanada | |
| mjrl @ git+https://github.com/aravindr93/mjrl@3871d93763d3b49c4741e6daeaebbc605fe140dc | |
| ml-collections @ git+https://github.com/google/ml_collections.git@cea60d600434c9d040d4cb3b261d500f08fb828a | |
| ml-dtypes==0.3.2 | |
| mpmath==1.3.0+computecanada | |
| mujoco @ file:///tmp/ebuser/avx2/MuJoCo/3.1.6/GCCcore-12.3-gentoo/mujoco/mujoco-3.1.6 | |
| mujoco-py==2.1.2.14 | |
| mypy_extensions==1.0.0+computecanada | |
| namex==0.0.8+computecanada | |
| nest_asyncio==1.6.0+computecanada | |
| networkx==3.3+computecanada | |
| ninja==1.11.1+computecanada | |
| nose==1.3.7+computecanada | |
| numpy==1.26.4+computecanada | |
| nvidia-pyindex==1.0.9 | |
| opt_einsum==3.3.0+computecanada | |
| optax==0.1.8+computecanada | |
| optree==0.10.0+computecanada | |
| packaging==24.1+computecanada | |
| pandas==2.2.1+computecanada | |
| parso==0.8.4+computecanada | |
| pathspec==0.12.1+computecanada | |
| pexpect==4.9.0+computecanada | |
| pillow==10.3.0+computecanada | |
| platformdirs==4.2.2+computecanada | |
| prompt_toolkit==3.0.47+computecanada | |
| protobuf==4.25.3 | |
| psutil==5.9.8 | |
| ptyprocess==0.7.0+computecanada | |
| pure_eval==0.2.2+computecanada | |
| pybullet==3.2.6 | |
| pycparser==2.22 | |
| pygments==2.18.0+computecanada | |
| PyOpenGL==3.1.7+computecanada | |
| pyparsing==3.1.2+computecanada | |
| python_dateutil==2.9.0.post0+computecanada | |
| pytz==2024.1+computecanada | |
| PyYAML==6.0.1+computecanada | |
| pyzmq==26.0.3+computecanada | |
| regex==2023.8.8+computecanada | |
| requests==2.32.3 | |
| rich==13.7.1+computecanada | |
| safetensors==0.4.3+computecanada | |
| scikit_learn==1.5.0+computecanada | |
| scipy==1.13.1+computecanada | |
| seaborn==0.13.2+computecanada | |
| sentry-sdk==2.9.0 | |
| setproctitle==1.3.2+computecanada | |
| six==1.16.0+computecanada | |
| smmap==5.0.1+computecanada | |
| stack_data==0.6.3+computecanada | |
| sympy==1.13.0+computecanada | |
| tensorboard==2.16.2+computecanada | |
| tensorboard-data-server==0.7.2 | |
| tensorflow==2.16.1+computecanada | |
| tensorflow_io_gcs_filesystem==0.32.0+computecanada | |
| termcolor==2.4.0+computecanada | |
| threadpoolctl==3.5.0+computecanada | |
| tokenizers==0.19.1+computecanada | |
| tomli==2.0.1+computecanada | |
| toolz==0.12.1+computecanada | |
| torch==2.2.1+computecanada | |
| tornado==6.3.3+computecanada | |
| tqdm==4.66.4+computecanada | |
| traitlets==5.14.3+computecanada | |
| transformers==4.42.3 | |
| triton==2.3.0+computecanada | |
| typing_extensions==4.12.2+computecanada | |
| tzdata==2024.1+computecanada | |
| urllib3==2.2.2 | |
| wandb==0.17.4 | |
| wcwidth==0.2.13+computecanada | |
| Werkzeug==3.0.3 | |
| wrapt==1.16.0+computecanada | |
| zipp==3.19.2 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: rl2024 | |
| channels: | |
| - menpo | |
| - conda-forge | |
| - defaults | |
| dependencies: | |
| - _libgcc_mutex=0.1 | |
| - _openmp_mutex=5.1 | |
| - asttokens=2.4.1 | |
| - backcall=0.2.0 | |
| - bzip2=1.0.8 | |
| - ca-certificates=2024.6.2 | |
| - decorator=5.1.1 | |
| - entrypoints=0.4 | |
| - executing=2.0.1 | |
| - glew=2.1.0 | |
| - glfw3=3.2.1 | |
| - jedi=0.19.1 | |
| - jupyter_client=7.3.4 | |
| - jupyter_core=5.7.2 | |
| - ld_impl_linux-64=2.38 | |
| - libffi=3.3 | |
| - libgcc-ng=11.2.0 | |
| - libglu=9.0.0 | |
| - libgomp=11.2.0 | |
| - libsodium=1.0.18 | |
| - libstdcxx-ng=11.2.0 | |
| - libuuid=1.41.5 | |
| - libxcb=1.15 | |
| - matplotlib-inline=0.1.7 | |
| - ncurses=6.4 | |
| - nest-asyncio=1.6.0 | |
| - openssl=1.1.1w | |
| - packaging=24.0 | |
| - parso=0.8.4 | |
| - pexpect=4.9.0 | |
| - pickleshare=0.7.5 | |
| - platformdirs=4.2.1 | |
| - prompt-toolkit=3.0.42 | |
| - ptyprocess=0.7.0 | |
| - pure_eval=0.2.2 | |
| - pygments=2.17.2 | |
| - python=3.10.0 | |
| - python-dateutil=2.9.0 | |
| - python_abi=3.10 | |
| - readline=8.2 | |
| - six=1.16.0 | |
| - sqlite=3.45.3 | |
| - stack_data=0.6.2 | |
| - tk=8.6.12 | |
| - traitlets=5.14.3 | |
| - wcwidth=0.2.13 | |
| - xorg-kbproto=1.0.7 | |
| - xorg-libx11=1.6.12 | |
| - xorg-libxext=1.3.4 | |
| - xorg-xextproto=7.3.0 | |
| - xorg-xproto=7.0.31 | |
| - xz=5.4.6 | |
| - zeromq=4.3.5 | |
| - zlib=1.2.13 | |
| - pip: | |
| - absl-py==2.1.0 | |
| - astunparse==1.6.3 | |
| - black==24.4.2 | |
| - certifi==2024.2.2 | |
| - cffi==1.16.0 | |
| - charset-normalizer==3.3.2 | |
| - chex==0.1.86 | |
| - click==8.1.7 | |
| - cloudpickle==3.0.0 | |
| - contextlib2==21.6.0 | |
| - contourpy==1.2.1 | |
| - cycler==0.12.1 | |
| - cython==0.29.37 | |
| - d4rl==1.1 | |
| - debugpy==1.6.7 | |
| - dm-control==1.0.20 | |
| - dm-env==1.6 | |
| - dm-tree==0.1.8 | |
| - docker-pycreds==0.4.0 | |
| - etils==1.7.0 | |
| - farama-notifications==0.0.4 | |
| - fasteners==0.19 | |
| - filelock==3.14.0 | |
| - flatbuffers==24.3.25 | |
| - fonttools==4.51.0 | |
| - fsspec==2024.3.1 | |
| - gast==0.5.4 | |
| - gitdb==4.0.11 | |
| - gitpython==3.1.43 | |
| - glfw==2.7.0 | |
| - google-pasta==0.2.0 | |
| - grpcio==1.63.0 | |
| - gym==0.23.1 | |
| - gym-notices==0.0.8 | |
| - gymnasium==0.29.1 | |
| - h5py==3.11.0 | |
| - huggingface-hub==0.23.0 | |
| - idna==3.7 | |
| - imageio==2.34.1 | |
| - importlib-resources==6.4.0 | |
| - ipdb==0.13.13 | |
| - ipykernel==6.14.0 | |
| - ipython==8.4.0 | |
| - jax==0.4.28 | |
| - jax-cuda12-pjrt==0.4.28 | |
| - jax-cuda12-plugin==0.4.28 | |
| - jaxlib==0.4.28 | |
| - jinja2==3.1.3 | |
| - joblib==1.4.0 | |
| - jupyter-core==5.7.2 | |
| - keras==3.3.3 | |
| - kiwisolver==1.4.5 | |
| - labmaze==1.0.6 | |
| - libclang==18.1.1 | |
| - lxml==5.2.2 | |
| - markdown==3.6 | |
| - markdown-it-py==3.0.0 | |
| - markupsafe==2.1.5 | |
| - matplotlib==3.8.4 | |
| - mdurl==0.1.2 | |
| - mjrl==1.0.0 | |
| - ml-collections==0.1.1 | |
| - ml-dtypes==0.3.2 | |
| - mpmath==1.3.0 | |
| - mujoco==3.1.6 | |
| - mujoco-py==2.1.2.14 | |
| - mypy-extensions==1.0.0 | |
| - namex==0.0.8 | |
| - networkx==3.3 | |
| - numpy==1.26.4 | |
| - nvidia-cublas-cu12==12.1.3.1 | |
| - nvidia-cuda-cupti-cu12==12.1.105 | |
| - nvidia-cuda-nvcc-cu12==12.4.131 | |
| - nvidia-cuda-nvrtc-cu12==12.1.105 | |
| - nvidia-cuda-runtime-cu12==12.1.105 | |
| - nvidia-cudnn-cu12==8.9.2.26 | |
| - nvidia-cufft-cu12==11.0.2.54 | |
| - nvidia-curand-cu12==10.3.2.106 | |
| - nvidia-cusolver-cu12==11.4.5.107 | |
| - nvidia-cusparse-cu12==12.1.0.106 | |
| - nvidia-nccl-cu12==2.20.5 | |
| - nvidia-nvjitlink-cu12==12.4.127 | |
| - nvidia-nvtx-cu12==12.1.105 | |
| - opt-einsum==3.3.0 | |
| - optax==0.2.2 | |
| - optree==0.11.0 | |
| - pandas==2.2.2 | |
| - patchelf==0.17.2.1 | |
| - pathspec==0.12.1 | |
| - pillow==10.3.0 | |
| - pip==23.3.1 | |
| - protobuf==4.25.3 | |
| - psutil==5.9.0 | |
| - pybullet==3.2.6 | |
| - pycparser==2.22 | |
| - pyopengl==3.1.7 | |
| - pyparsing==3.1.2 | |
| - pytz==2024.1 | |
| - pyyaml==6.0.1 | |
| - pyzmq==25.1.2 | |
| - regex==2024.5.15 | |
| - requests==2.31.0 | |
| - rich==13.7.1 | |
| - safetensors==0.4.3 | |
| - scikit-learn==1.4.2 | |
| - scipy==1.13.0 | |
| - seaborn==0.13.2 | |
| - sentry-sdk==2.3.1 | |
| - setproctitle==1.3.3 | |
| - setuptools==68.2.2 | |
| - smmap==5.0.1 | |
| - sympy==1.12 | |
| - tensorboard==2.16.2 | |
| - tensorboard-data-server==0.7.2 | |
| - tensorflow==2.16.1 | |
| - tensorflow-io-gcs-filesystem==0.37.0 | |
| - termcolor==2.4.0 | |
| - threadpoolctl==3.5.0 | |
| - tokenize-rt==5.2.0 | |
| - tokenizers==0.19.1 | |
| - tomli==2.0.1 | |
| - toolz==0.12.1 | |
| - torch==2.3.1 | |
| - torchvision==0.18.1 | |
| - tornado==6.1 | |
| - tqdm==4.66.4 | |
| - transformers==4.41.0 | |
| - triton==2.3.1 | |
| - typing-extensions==4.11.0 | |
| - tzdata==2024.1 | |
| - urllib3==2.2.1 | |
| - wandb==0.17.1 | |
| - werkzeug==3.0.3 | |
| - wheel==0.41.2 | |
| - wrapt==1.16.0 | |
| - zipp==3.19.2 | |
| prefix: /home/mila/t/tianwei.ni/.conda/envs/rl2024 | |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import os | |
| os.environ["MUJOCO_GL"] = "egl" # egl will be faster than osmesa | |
| from dm_control import suite | |
| env = suite.load('cartpole', 'swingup') | |
| pixels = env.physics.render() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import jax | |
| import jax.numpy as jnp | |
| from jax import jit | |
| print(jax.devices()[0].platform) | |
| rng = jax.random.PRNGKey(1) | |
| rng, key = jax.random.split(rng) |
Author
Author
Clean Disk (obilaniu)
In Mila cluster, try the following steps:
- Remove pip cache
pip cache purge - Remove deprecated conda envs
conda remove -n ENV_NAME --all - Remove unused packages in conda
conda clean -it(do not useconda clean -awhich may break conda...)
For short-term projects (90 days), create the env in scratch conda create -p $SCRATCH/newenvname
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Count the #files recursively in a folder. This is useful for CC that has a limit on #files.
Zhixuan: check I really installed the packages into the virtualenv:
In narval server, the virtual env may be not automatically loaded in jupyter of vscode. I have to manually add it by searching
Python: Select Interpreterin the command palette. Then type~/.venv/rl/bin/pythonto add the venv.