Skip to content

Instantly share code, notes, and snippets.

@twni2016
Last active November 16, 2025 04:30
Show Gist options
  • Select an option

  • Save twni2016/5b18a97c66686cbddbff84e4bdc1b984 to your computer and use it in GitHub Desktop.

Select an option

Save twni2016/5b18a97c66686cbddbff84e4bdc1b984 to your computer and use it in GitHub Desktop.
Install on Mila Cluster / Compute Canada
absl_py==2.1.0+computecanada
asttokens==2.4.1+computecanada
astunparse==1.6.3+computecanada
black==24.4.2
causal-conv1d==1.4.0
certifi==2024.7.4
cffi==1.16.0+computecanada
charset-normalizer==3.3.2
chex==0.1.86+computecanada
click==8.1.7+computecanada
cloudpickle==3.0.0+computecanada
comm==0.2.2+computecanada
contextlib2==21.6.0+computecanada
contourpy==1.2.1+computecanada
cycler==0.12.1+computecanada
Cython==0.29.37
D4RL @ git+https://github.com/Farama-Foundation/d4rl@71a9549f2091accff93eeff68f1f3ab2c0e0a288
debugpy==1.8.1+computecanada
decorator==5.1.1+computecanada
dm_control==1.0.20
dm_env==1.6+computecanada
dm_tree==0.1.8+computecanada
docker-pycreds==0.4.0+computecanada
einops==0.8.0+computecanada
etils==1.7.0+computecanada
exceptiongroup==1.2.1+computecanada
executing==2.0.1+computecanada
Farama_Notifications==0.0.4+computecanada
fasteners==0.19+computecanada
filelock==3.15.4
flatbuffers==20190709135844+computecanada
fonttools==4.53.0+computecanada
fsspec==2024.6.1+computecanada
gast==0.6.0
gitdb==4.0.11+computecanada
GitPython==3.1.43
glfw==1.12.0+computecanada
google-pasta==0.2.0+computecanada
GPUtil==1.4.0+computecanada
grpcio==1.62.1+computecanada
gym==0.23.1
gym_notices==0.0.8+computecanada
gymnasium==0.29.1+computecanada
h5py==3.11.0+computecanada
huggingface_hub==0.23.4+computecanada
idna==3.7
imageio==2.34.2
importlib_resources==6.4.0
ipdb==0.13.13
ipykernel==6.29.4+computecanada
ipython==8.25.0+computecanada
jax==0.4.30
jaxlib==0.4.28+cuda12.cudnn89.computecanada
jedi==0.19.1+computecanada
jinja2==3.1.4+computecanada
joblib==1.4.2+computecanada
jupyter_client==8.6.2+computecanada
jupyter_core==5.7.2+computecanada
keras==3.4.1
kiwisolver==1.4.5+computecanada
labmaze==1.0.6+computecanada
libclang==14.0.1+computecanada
lxml==5.2.2+computecanada
mamba-ssm==2.2.2
Markdown==3.6
markdown_it_py==3.0.0+computecanada
MarkupSafe==2.1.5+computecanada
matplotlib==3.9.0+computecanada
matplotlib_inline==0.1.7+computecanada
mdurl==0.1.2+computecanada
mjrl @ git+https://github.com/aravindr93/mjrl@3871d93763d3b49c4741e6daeaebbc605fe140dc
ml-collections @ git+https://github.com/google/ml_collections.git@cea60d600434c9d040d4cb3b261d500f08fb828a
ml-dtypes==0.3.2
mpmath==1.3.0+computecanada
mujoco @ file:///tmp/ebuser/avx2/MuJoCo/3.1.6/GCCcore-12.3-gentoo/mujoco/mujoco-3.1.6
mujoco-py==2.1.2.14
mypy_extensions==1.0.0+computecanada
namex==0.0.8+computecanada
nest_asyncio==1.6.0+computecanada
networkx==3.3+computecanada
ninja==1.11.1+computecanada
nose==1.3.7+computecanada
numpy==1.26.4+computecanada
nvidia-pyindex==1.0.9
opt_einsum==3.3.0+computecanada
optax==0.1.8+computecanada
optree==0.10.0+computecanada
packaging==24.1+computecanada
pandas==2.2.1+computecanada
parso==0.8.4+computecanada
pathspec==0.12.1+computecanada
pexpect==4.9.0+computecanada
pillow==10.3.0+computecanada
platformdirs==4.2.2+computecanada
prompt_toolkit==3.0.47+computecanada
protobuf==4.25.3
psutil==5.9.8
ptyprocess==0.7.0+computecanada
pure_eval==0.2.2+computecanada
pybullet==3.2.6
pycparser==2.22
pygments==2.18.0+computecanada
PyOpenGL==3.1.7+computecanada
pyparsing==3.1.2+computecanada
python_dateutil==2.9.0.post0+computecanada
pytz==2024.1+computecanada
PyYAML==6.0.1+computecanada
pyzmq==26.0.3+computecanada
regex==2023.8.8+computecanada
requests==2.32.3
rich==13.7.1+computecanada
safetensors==0.4.3+computecanada
scikit_learn==1.5.0+computecanada
scipy==1.13.1+computecanada
seaborn==0.13.2+computecanada
sentry-sdk==2.9.0
setproctitle==1.3.2+computecanada
six==1.16.0+computecanada
smmap==5.0.1+computecanada
stack_data==0.6.3+computecanada
sympy==1.13.0+computecanada
tensorboard==2.16.2+computecanada
tensorboard-data-server==0.7.2
tensorflow==2.16.1+computecanada
tensorflow_io_gcs_filesystem==0.32.0+computecanada
termcolor==2.4.0+computecanada
threadpoolctl==3.5.0+computecanada
tokenizers==0.19.1+computecanada
tomli==2.0.1+computecanada
toolz==0.12.1+computecanada
torch==2.2.1+computecanada
tornado==6.3.3+computecanada
tqdm==4.66.4+computecanada
traitlets==5.14.3+computecanada
transformers==4.42.3
triton==2.3.0+computecanada
typing_extensions==4.12.2+computecanada
tzdata==2024.1+computecanada
urllib3==2.2.2
wandb==0.17.4
wcwidth==0.2.13+computecanada
Werkzeug==3.0.3
wrapt==1.16.0+computecanada
zipp==3.19.2
name: rl2024
channels:
- menpo
- conda-forge
- defaults
dependencies:
- _libgcc_mutex=0.1
- _openmp_mutex=5.1
- asttokens=2.4.1
- backcall=0.2.0
- bzip2=1.0.8
- ca-certificates=2024.6.2
- decorator=5.1.1
- entrypoints=0.4
- executing=2.0.1
- glew=2.1.0
- glfw3=3.2.1
- jedi=0.19.1
- jupyter_client=7.3.4
- jupyter_core=5.7.2
- ld_impl_linux-64=2.38
- libffi=3.3
- libgcc-ng=11.2.0
- libglu=9.0.0
- libgomp=11.2.0
- libsodium=1.0.18
- libstdcxx-ng=11.2.0
- libuuid=1.41.5
- libxcb=1.15
- matplotlib-inline=0.1.7
- ncurses=6.4
- nest-asyncio=1.6.0
- openssl=1.1.1w
- packaging=24.0
- parso=0.8.4
- pexpect=4.9.0
- pickleshare=0.7.5
- platformdirs=4.2.1
- prompt-toolkit=3.0.42
- ptyprocess=0.7.0
- pure_eval=0.2.2
- pygments=2.17.2
- python=3.10.0
- python-dateutil=2.9.0
- python_abi=3.10
- readline=8.2
- six=1.16.0
- sqlite=3.45.3
- stack_data=0.6.2
- tk=8.6.12
- traitlets=5.14.3
- wcwidth=0.2.13
- xorg-kbproto=1.0.7
- xorg-libx11=1.6.12
- xorg-libxext=1.3.4
- xorg-xextproto=7.3.0
- xorg-xproto=7.0.31
- xz=5.4.6
- zeromq=4.3.5
- zlib=1.2.13
- pip:
- absl-py==2.1.0
- astunparse==1.6.3
- black==24.4.2
- certifi==2024.2.2
- cffi==1.16.0
- charset-normalizer==3.3.2
- chex==0.1.86
- click==8.1.7
- cloudpickle==3.0.0
- contextlib2==21.6.0
- contourpy==1.2.1
- cycler==0.12.1
- cython==0.29.37
- d4rl==1.1
- debugpy==1.6.7
- dm-control==1.0.20
- dm-env==1.6
- dm-tree==0.1.8
- docker-pycreds==0.4.0
- etils==1.7.0
- farama-notifications==0.0.4
- fasteners==0.19
- filelock==3.14.0
- flatbuffers==24.3.25
- fonttools==4.51.0
- fsspec==2024.3.1
- gast==0.5.4
- gitdb==4.0.11
- gitpython==3.1.43
- glfw==2.7.0
- google-pasta==0.2.0
- grpcio==1.63.0
- gym==0.23.1
- gym-notices==0.0.8
- gymnasium==0.29.1
- h5py==3.11.0
- huggingface-hub==0.23.0
- idna==3.7
- imageio==2.34.1
- importlib-resources==6.4.0
- ipdb==0.13.13
- ipykernel==6.14.0
- ipython==8.4.0
- jax==0.4.28
- jax-cuda12-pjrt==0.4.28
- jax-cuda12-plugin==0.4.28
- jaxlib==0.4.28
- jinja2==3.1.3
- joblib==1.4.0
- jupyter-core==5.7.2
- keras==3.3.3
- kiwisolver==1.4.5
- labmaze==1.0.6
- libclang==18.1.1
- lxml==5.2.2
- markdown==3.6
- markdown-it-py==3.0.0
- markupsafe==2.1.5
- matplotlib==3.8.4
- mdurl==0.1.2
- mjrl==1.0.0
- ml-collections==0.1.1
- ml-dtypes==0.3.2
- mpmath==1.3.0
- mujoco==3.1.6
- mujoco-py==2.1.2.14
- mypy-extensions==1.0.0
- namex==0.0.8
- networkx==3.3
- numpy==1.26.4
- nvidia-cublas-cu12==12.1.3.1
- nvidia-cuda-cupti-cu12==12.1.105
- nvidia-cuda-nvcc-cu12==12.4.131
- nvidia-cuda-nvrtc-cu12==12.1.105
- nvidia-cuda-runtime-cu12==12.1.105
- nvidia-cudnn-cu12==8.9.2.26
- nvidia-cufft-cu12==11.0.2.54
- nvidia-curand-cu12==10.3.2.106
- nvidia-cusolver-cu12==11.4.5.107
- nvidia-cusparse-cu12==12.1.0.106
- nvidia-nccl-cu12==2.20.5
- nvidia-nvjitlink-cu12==12.4.127
- nvidia-nvtx-cu12==12.1.105
- opt-einsum==3.3.0
- optax==0.2.2
- optree==0.11.0
- pandas==2.2.2
- patchelf==0.17.2.1
- pathspec==0.12.1
- pillow==10.3.0
- pip==23.3.1
- protobuf==4.25.3
- psutil==5.9.0
- pybullet==3.2.6
- pycparser==2.22
- pyopengl==3.1.7
- pyparsing==3.1.2
- pytz==2024.1
- pyyaml==6.0.1
- pyzmq==25.1.2
- regex==2024.5.15
- requests==2.31.0
- rich==13.7.1
- safetensors==0.4.3
- scikit-learn==1.4.2
- scipy==1.13.0
- seaborn==0.13.2
- sentry-sdk==2.3.1
- setproctitle==1.3.3
- setuptools==68.2.2
- smmap==5.0.1
- sympy==1.12
- tensorboard==2.16.2
- tensorboard-data-server==0.7.2
- tensorflow==2.16.1
- tensorflow-io-gcs-filesystem==0.37.0
- termcolor==2.4.0
- threadpoolctl==3.5.0
- tokenize-rt==5.2.0
- tokenizers==0.19.1
- tomli==2.0.1
- toolz==0.12.1
- torch==2.3.1
- torchvision==0.18.1
- tornado==6.1
- tqdm==4.66.4
- transformers==4.41.0
- triton==2.3.1
- typing-extensions==4.11.0
- tzdata==2024.1
- urllib3==2.2.1
- wandb==0.17.1
- werkzeug==3.0.3
- wheel==0.41.2
- wrapt==1.16.0
- zipp==3.19.2
prefix: /home/mila/t/tianwei.ni/.conda/envs/rl2024
import os
os.environ["MUJOCO_GL"] = "egl" # egl will be faster than osmesa
from dm_control import suite
env = suite.load('cartpole', 'swingup')
pixels = env.physics.render()
import jax
import jax.numpy as jnp
from jax import jit
print(jax.devices()[0].platform)
rng = jax.random.PRNGKey(1)
rng, key = jax.random.split(rng)
@twni2016
Copy link
Author

twni2016 commented Nov 18, 2023

Clean Disk (obilaniu)

In Mila cluster, try the following steps:

  • Remove pip cache pip cache purge
  • Remove deprecated conda envs conda remove -n ENV_NAME --all
  • Remove unused packages in conda conda clean -it (do not use conda clean -a which may break conda...)

For short-term projects (90 days), create the env in scratch conda create -p $SCRATCH/newenvname

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment