Last active
April 8, 2021 05:00
-
-
Save HTLife/ca0a7d48bd9a3192cf8d3c8b1347e8dd to your computer and use it in GitHub Desktop.
Time distributed CNNs + LSTM in Keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def defModel(): | |
model = Sequential() | |
#Izda.add(TimeDistributed( | |
# Convolution2D(40,3,3,border_mode='same'), input_shape=(sequence_lengths, 1,8,10))) | |
model.add( | |
TimeDistributed( | |
Conv2D(32, (7, 7), padding='same', strides = 2), | |
input_shape=(None, 540, 960, 2))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(64, (5, 5), padding='same', strides = 2))) | |
model.add(Activation('relu')) | |
#model.add(TimeDistributed(MaxPooling2D((2,2), data_format = 'channels_first', name='pool1'))) | |
model.add(TimeDistributed(Conv2D(128, (5, 5), padding='same', strides = 2))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(128, (3, 3), padding='same'))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same', strides = 2))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same'))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same', strides = 2))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(256, (3, 3), padding='same'))) | |
model.add(Activation('relu')) | |
model.add(TimeDistributed(Conv2D(512, (3, 3), padding='same', strides = 2))) | |
model.add(Activation('relu')) | |
#model.add(TimeDistributed(MaxPooling2D((2,2), data_format = 'channels_first', name='pool1'))) | |
#model.add(TimeDistributed(Conv2D(32, (1, 1), data_format = 'channels_first'))) | |
#model.add(Activation('relu')) | |
model.add(TimeDistributed(Flatten())) | |
#model.add(TimeDistributed(Dense(512, name="first_dense" ))) | |
#model.add(LSTM(num_classes, return_sequences=True)) | |
model.add(LSTM(512 , return_sequences=True)) | |
model.add(LSTM(512)) | |
model.add(Dense(128)) | |
model.add(Dense(3)) | |
model.compile(loss='mean_squared_error', optimizer='adam') #, | |
#metrics=['accuracy']) | |
plot_model(model, to_file='model/model.png') | |
plot_model(model, to_file='model/model_detail.png', show_shapes=True) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I believe the input shape would be ( batch_size, time_step, rows, cols, channels. ), in which case the model will move ahead with the training process.