Created
November 20, 2016 11:50
-
-
Save zhengyangchoong/dce8cfd2527d4efbee371c93522f929f to your computer and use it in GitHub Desktop.
himcm question A plot generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
categories: pro, premier, open. | |
cly --> strong men | |
ath --> strong women | |
swim, t1, bike, t2, run, total | |
where t1 and t2 refer to the times needed for the transition between the modes of exercise. | |
""" | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import datetime | |
f = open('HiMCM_TriDataSet.csv', 'r') | |
people = [] | |
class person(): | |
def __init__(self): | |
self.id = 0 | |
self.age = 0 | |
self.gender = "" | |
self.cat = "" | |
self.timings = [] | |
self.speeds = [] | |
def processTimings(self): | |
newtimings = [] | |
speeds = [] | |
for i in self.timings: | |
#print int(i.split(':')[1]) * 60 | |
t = int(i.split(':')[0]) * 3600 + int(i.split(':')[1]) * 60 + int(i.split(':')[2].strip()) | |
newtimings.append(t) | |
self.speeds.append(1.0/t) | |
self.timings = newtimings | |
for line in f: | |
if line[:1] == "#": | |
continue | |
if len(line) == 0: | |
continue | |
a = person() | |
data = line.strip().split(",") | |
a.id = int(data[0]) | |
a.age = int(data[1]) | |
a.gender = data[2] | |
a.cat = data[3] | |
a.timings = data[4:] | |
a.processTimings() | |
people.append(a) | |
male_open_totaltiming = [] | |
female_open_totaltiming = [] | |
def genHistPlot(cats, timingindex, filename, fn = None): # category, timings index | |
_data = [] | |
if fn == None: | |
for i in cats: | |
_data.append([person.timings[timingindex] for person in people if person.cat == i]) | |
else: | |
for i in cats: | |
_data.append([fn(person.timings[timingindex]) for person in people if person.cat == i]) | |
with plt.style.context('fivethirtyeight'): | |
plt.gcf().subplots_adjust(bottom=0.15) | |
plt.gcf().subplots_adjust(left=0.17) | |
plt.grid('off') | |
for i in _data: | |
plt.hist(i, normed=1,alpha = 0.5) | |
plt.xlabel("Total time [s]", fontsize=16) | |
plt.ylabel("Normalised frequency [#]", fontsize=16) | |
plt.savefig(filename+'.pdf') | |
plt.clf() | |
plt.cla() | |
plt.close() | |
genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_timing_distribution") | |
genHistPlot(["M OPEN", "F OPEN"], 5, "open_gender_speed_distribution", fn = lambda x: 1.0/x) | |
genHistPlot(["M PREMIER", "M PRO", "CLY"], 1, "male_non-open_swimtime_distribution") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi!
Would you mind explaining how to use this?
Thanks for your time!
Regards.