Last active
October 21, 2021 04:54
-
-
Save yuyay/16ce4914683da30f87d0 to your computer and use it in GitHub Desktop.
kernel canonical correlation analysis in python
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#! encoding=UTF-8 | |
""" | |
kernel canonical correlation analysis | |
""" | |
import numpy as np | |
from scipy.linalg import svd | |
from sklearn.metrics.pairwise import pairwise_kernels, euclidean_distances | |
class KCCA(object): | |
def __init__(self, n_components=1, epsilon=1.0, kernel="linear", degree=3, gamma=None, coef0=1, n_jobs=1): | |
self.n_components = n_components | |
self.epsilon = epsilon | |
self.kernel = kernel | |
self.degree = degree | |
self.gamma = gamma | |
self.coef0 = coef0 | |
self.n_jobs = n_jobs | |
def fit(self, X, Y): | |
ndata_x, nfeature_x = X.shape | |
ndata_y, nfeature_y = Y.shape | |
if ndata_x != ndata_y: | |
raise Exception("Inequality of number of data between X and Y") | |
if self.kernel != "precomputed": | |
Kx = self._pairwise_kernels(X) | |
Ky = self._pairwise_kernels(Y) | |
I = self.epsilon * np.identity(ndata_x) | |
KxI_inv = np.linalg.inv(Kx + I) | |
KyI_inv = np.linalg.inv(Ky + I) | |
L = np.dot(KxI_inv, np.dot(Kx, np.dot(Ky, KyI_inv))) | |
U, s, Vh = svd(L) | |
self.alpha = np.dot(KxI_inv, U[:, :self.n_components]) | |
self.beta = np.dot(KyI_inv, Vh.T[:, :self.n_components]) | |
return self | |
def _pairwise_kernels(self, X, Y=None): | |
return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, n_jobs=self.n_jobs, degree=self.degree, gamma=self.gamma, coef0=self.coef0) | |
if __name__ == "__main__": | |
X = np.random.normal(size=(1000,100)) | |
Y = np.random.normal(size=(1000,20)) | |
kcca = KCCA(n_components=10, kernel="rbf", n_jobs=1, epsilon=0.1).fit(X, Y) | |
""" | |
matching on test data | |
""" | |
alpha = kcca.alpha | |
beta = kcca.beta | |
X_te = np.random.normal(size=(10,100)) | |
Y_te = np.random.normal(size=(10,20)) | |
Kx = kcca._pairwise_kernels(X_te, X) | |
Ky = kcca._pairwise_kernels(Y_te, Y) | |
F = np.dot(Kx, alpha) | |
G = np.dot(Ky, beta) | |
D = euclidean_distances(F, G) | |
idx_pred = np.argmin(D, axis=0) | |
print "matching result:", idx_pred | |
""" | |
similarity between true object and predicted object on test data | |
""" | |
idx_true = range(10) | |
C = pairwise_kernels(Y_te[idx_true], Y_te[idx_pred], metric="cosine") | |
print "1-best mean similarity:", np.mean(C.diagonal()) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I am not quite understand the computation process for KCCA. It should be the eigval of B = (np.dot(KxI_inv, np.dot(Ky, np.dot( KyI_inv,Kx)))), so is there any resources or papers for your solution for Kcca?