Skip to content

Instantly share code, notes, and snippets.

View yoyolicoris's full-sized avatar
๐ŸŽ
ไธญๅคฎใ‚’ใชใ‚ใ‚‹ใชใ‚ˆ๏ผ

YCY yoyolicoris

๐ŸŽ
ไธญๅคฎใ‚’ใชใ‚ใ‚‹ใชใ‚ˆ๏ผ
View GitHub Profile
๐ŸŒž Morning 202 commits โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 30.7%
๐ŸŒ† Daytime 251 commits โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 38.1%
๐ŸŒƒ Evening 96 commits โ–ˆโ–ˆโ–ˆโ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 14.6%
๐ŸŒ™ Night 109 commits โ–ˆโ–ˆโ–ˆโ–โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘โ–‘ 16.6%
@yoyolicoris
yoyolicoris / differentiable_lfilter.py
Last active August 25, 2022 12:59
This lfilter can propogate gradient to filter coefficients.
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchaudio.functional import lfilter as torch_lfilter
from torch.autograd import Function, gradcheck
class lfilter(Function):
@staticmethod
import numpy as np
import networkx as nx
from scipy.spatial import Delaunay
def W(x):
return (x + np.pi) % (2 * np.pi) - np.pi
def mcf_sparse(x, y, psi, capacity=None):
points = np.vstack((x, y)).T
num_points = points.shape[0]
import numpy as np
import networkx as nx
def W(x):
return (x + np.pi) % (2 * np.pi) - np.pi
def mcf(x: np.ndarray, capacity=None):
assert x.ndim == 2, "Input x should be a 2d array!"
# construct index for each node