Created
August 3, 2023 09:43
-
-
Save younesbelkada/cdda6e4abcb09e58f6324d75e0d88862 to your computer and use it in GitHub Desktop.
Train adapters using transformers integration of PEFT
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from datasets import load_dataset | |
import torch | |
from peft import LoraConfig, prepare_model_for_int8_training | |
from trl import SFTTrainer | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoTokenizer, TrainingArguments | |
dataset_name = "timdettmers/openassistant-guanaco" | |
dataset = load_dataset(dataset_name, split="train") | |
model_name = "facebook/opt-350m" | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=bnb_config, | |
torch_dtype=torch.float16, | |
device_map={"":0} | |
) | |
model.config.use_cache = False | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
tokenizer.padding_side = "right" | |
lora_alpha = 16 | |
lora_dropout = 0.1 | |
lora_r = 64 | |
peft_config = LoraConfig( | |
lora_alpha=lora_alpha, | |
lora_dropout=lora_dropout, | |
r=lora_r, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = prepare_model_for_int8_training(model) | |
model.add_adapter(peft_config) | |
output_dir = "./train_mpt_7b" | |
per_device_train_batch_size = 2 | |
gradient_accumulation_steps = 16 | |
optim = "paged_adamw_32bit" | |
save_steps = 10 | |
logging_steps = 1 | |
learning_rate = 1e-4 | |
max_grad_norm = 0.3 | |
max_steps = 1000 | |
warmup_ratio = 0.03 | |
lr_scheduler_type = "linear" | |
training_arguments = TrainingArguments( | |
output_dir=output_dir, | |
per_device_train_batch_size=per_device_train_batch_size, | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
optim=optim, | |
save_steps=save_steps, | |
logging_steps=logging_steps, | |
learning_rate=learning_rate, | |
fp16=True, | |
max_grad_norm=max_grad_norm, | |
max_steps=max_steps, | |
warmup_ratio=warmup_ratio, | |
lr_scheduler_type=lr_scheduler_type, | |
) | |
max_seq_length = 512 | |
trainer = SFTTrainer( | |
model=model, | |
train_dataset=dataset, | |
dataset_text_field="text", | |
max_seq_length=max_seq_length, | |
tokenizer=tokenizer, | |
args=training_arguments, | |
packing=True, | |
) | |
trainer.train() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment