Last active
September 10, 2019 20:49
-
-
Save wmay/0c032d4bc7aca899388702a164c00326 to your computer and use it in GitHub Desktop.
Trump rallies and hate crimes
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## are Trump (or Clinton) rallies associated with hate crimes? | |
library(MASS) | |
## organize data (downloaded from the analysis page, under the "Hate | |
## Incidents" tab) | |
## https://public.tableau.com/profile/matthew.lilley#!/vizhome/TrumpRallies_15676277431850/Population-TrumpRally | |
hate = read.csv('Hate_Incidents_data.csv', check.names = F, | |
stringsAsFactors = F) | |
hate$Geoid = as.factor(hate$Geoid) | |
hate$month = as.Date(hate$`Month-Year`, format = '%m/%d/%Y') | |
hate$log_pop = pmax(hate$`Trump Rally Population (Log)`, | |
hate$`No Trump Rally Population (Log)`) | |
## quick check, make sure I see a spike in November like described in | |
## the paper | |
monthly_hate = aggregate(`Hate Incidents` ~ month, FUN = sum, | |
data = hate) | |
plot(monthly_hate$month, monthly_hate$`Hate Incidents`, type = 'l', | |
xlab = 'Month', ylab = 'Hate Incidents') | |
## try to reproduce paper results | |
f_paper = `Hate Incidents` ~ `Trump Rally Occurred` + | |
`Jewish Population Share` + `Hate Groups` + `Violent Crime Rate` + | |
`Property Crime Rate` + `Romney 2012 Vote Share` + | |
`College Educated Share` + Region + as.factor(month) | |
r_paper = glm.nb(f_paper, hate, control = glm.control(maxit = 50)) | |
summary(r_paper) | |
## pretty close! | |
## try to reproduce reason/Clinton results | |
f_reason1 = `Hate Incidents` ~ `Clinton Rally Occurred` + | |
`Jewish Population Share` + `Hate Groups` + `Violent Crime Rate` + | |
`Property Crime Rate` + `Romney 2012 Vote Share` + | |
`College Educated Share` + Region + as.factor(month) | |
r_reason1 = glm.nb(f_reason1, hate, control = glm.control(maxit = 50)) | |
summary(r_reason1) | |
## pretty close! | |
## try to reproduce reason/population results | |
f_reason2 = `Hate Incidents` ~ `Trump Rally Occurred` + | |
`Clinton Rally Occurred` + log_pop + `Jewish Population Share` + | |
`Hate Groups` + `Violent Crime Rate` + `Property Crime Rate` + | |
`Romney 2012 Vote Share` + `College Educated Share` + Region + | |
as.factor(month) | |
r_reason2 = glm.nb(f_reason2, hate, control = glm.control(maxit = 50)) | |
summary(r_reason2) | |
## pretty close! | |
## now try with county fixed effects substituting for county-level | |
## predictors | |
f_fe = `Hate Incidents` ~ `Trump Rally Occurred` + | |
`Clinton Rally Occurred` + as.factor(month) + Geoid | |
## r_fe = glm.nb(f_fe, hate, control = glm.control(maxit = 50)) | |
## ^ can't run for this model, glm.nb is too slow | |
## try again, removing counties without rallies | |
rally_counties = unique(hate$Geoid[hate$`Trump Rally Occurred` | | |
hate$`Clinton Rally Occurred`]) | |
hate2 = subset(hate, Geoid %in% rally_counties) | |
r_fe = glm.nb(f_fe, hate2, control = glm.control(maxit = 50)) | |
summary(r_fe) | |
## finds smaller Trump rally association but greater | |
## uncertainty. Neither Trump nor Clinton rally effects are | |
## statistically significant |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
R version 3.6.1 (2019-07-05) -- "Action of the Toes" | |
Copyright (C) 2019 The R Foundation for Statistical Computing | |
Platform: x86_64-pc-linux-gnu (64-bit) | |
R is free software and comes with ABSOLUTELY NO WARRANTY. | |
You are welcome to redistribute it under certain conditions. | |
Type 'license()' or 'licence()' for distribution details. | |
Natural language support but running in an English locale | |
R is a collaborative project with many contributors. | |
Type 'contributors()' for more information and | |
'citation()' on how to cite R or R packages in publications. | |
Type 'demo()' for some demos, 'help()' for on-line help, or | |
'help.start()' for an HTML browser interface to help. | |
Type 'q()' to quit R. | |
> ## are Trump (or Clinton) rallies associated with hate crimes? | |
> | |
> library(MASS) | |
> | |
> ## organize data (downloaded from the analysis page, under the "Hate | |
> ## Incidents" tab) | |
> ## https://public.tableau.com/profile/matthew.lilley#!/vizhome/TrumpRallies_15676277431850/Population-TrumpRally | |
> hate = read.csv('Hate_Incidents_data.csv', check.names = F, | |
+ stringsAsFactors = F) | |
> hate$Geoid = as.factor(hate$Geoid) | |
> hate$month = as.Date(hate$`Month-Year`, format = '%m/%d/%Y') | |
> hate$log_pop = pmax(hate$`Trump Rally Population (Log)`, | |
+ hate$`No Trump Rally Population (Log)`) | |
> | |
> ## quick check, make sure I see a spike in November like described in | |
> ## the paper | |
> monthly_hate = aggregate(`Hate Incidents` ~ month, FUN = sum, | |
+ data = hate) | |
> plot(monthly_hate$month, monthly_hate$`Hate Incidents`, type = 'l', | |
+ xlab = 'Month', ylab = 'Hate Incidents') | |
> | |
> ## try to reproduce paper results | |
> f_paper = `Hate Incidents` ~ `Trump Rally Occurred` + | |
+ `Jewish Population Share` + `Hate Groups` + `Violent Crime Rate` + | |
+ `Property Crime Rate` + `Romney 2012 Vote Share` + | |
+ `College Educated Share` + Region + as.factor(month) | |
> r_paper = glm.nb(f_paper, hate, control = glm.control(maxit = 50)) | |
> summary(r_paper) | |
Call: | |
glm.nb(formula = f_paper, data = hate, control = glm.control(maxit = 50), | |
init.theta = 0.2345175165, link = log) | |
Deviance Residuals: | |
Min 1Q Median 3Q Max | |
-1.9695 -0.1229 -0.0794 -0.0588 5.5398 | |
Coefficients: | |
Estimate Std. Error z value Pr(>|z|) | |
(Intercept) -5.2421736 0.3230929 -16.225 < 2e-16 *** | |
`Trump Rally Occurred` 1.1126400 0.1156827 9.618 < 2e-16 *** | |
`Jewish Population Share` 30.2905198 1.3304257 22.768 < 2e-16 *** | |
`Hate Groups` 0.0219351 0.0021908 10.012 < 2e-16 *** | |
`Violent Crime Rate` 0.0042928 0.0010688 4.017 5.91e-05 *** | |
`Property Crime Rate` 0.0007101 0.0002907 2.443 0.01456 * | |
`Romney 2012 Vote Share` -4.0780470 0.3494679 -11.669 < 2e-16 *** | |
`College Educated Share` 5.5039034 0.4161534 13.226 < 2e-16 *** | |
RegionNortheast 1.0950162 0.1436050 7.625 2.44e-14 *** | |
RegionSouth -0.2919943 0.1488601 -1.962 0.04982 * | |
RegionWest 0.4188024 0.1599306 2.619 0.00883 ** | |
as.factor(month)2016-02-01 -0.0309747 0.2536446 -0.122 0.90281 | |
as.factor(month)2016-03-01 0.5793208 0.2311355 2.506 0.01220 * | |
as.factor(month)2016-04-01 0.2301420 0.2411973 0.954 0.34000 | |
as.factor(month)2016-05-01 0.2536822 0.2400133 1.057 0.29053 | |
as.factor(month)2016-06-01 0.2168765 0.2410137 0.900 0.36820 | |
as.factor(month)2016-07-01 -0.1999036 0.2564044 -0.780 0.43560 | |
as.factor(month)2016-08-01 0.0234396 0.2469937 0.095 0.92439 | |
as.factor(month)2016-09-01 0.0484270 0.2457390 0.197 0.84378 | |
as.factor(month)2016-10-01 0.3252195 0.2361296 1.377 0.16842 | |
as.factor(month)2016-11-01 0.9779578 0.2196186 4.453 8.47e-06 *** | |
as.factor(month)2016-12-01 0.5416994 0.2299069 2.356 0.01846 * | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
(Dispersion parameter for Negative Binomial(0.2345) family taken to be 1) | |
Null deviance: 6891.1 on 37667 degrees of freedom | |
Residual deviance: 2521.8 on 37646 degrees of freedom | |
(36 observations deleted due to missingness) | |
AIC: 5868.3 | |
Number of Fisher Scoring iterations: 1 | |
Theta: 0.2345 | |
Std. Err.: 0.0163 | |
2 x log-likelihood: -5822.3130 | |
> ## pretty close! | |
> | |
> ## try to reproduce reason/Clinton results | |
> f_reason1 = `Hate Incidents` ~ `Clinton Rally Occurred` + | |
+ `Jewish Population Share` + `Hate Groups` + `Violent Crime Rate` + | |
+ `Property Crime Rate` + `Romney 2012 Vote Share` + | |
+ `College Educated Share` + Region + as.factor(month) | |
> r_reason1 = glm.nb(f_reason1, hate, control = glm.control(maxit = 50)) | |
> summary(r_reason1) | |
Call: | |
glm.nb(formula = f_reason1, data = hate, control = glm.control(maxit = 50), | |
init.theta = 0.2127625009, link = log) | |
Deviance Residuals: | |
Min 1Q Median 3Q Max | |
-1.9169 -0.1253 -0.0811 -0.0595 5.2423 | |
Coefficients: | |
Estimate Std. Error z value Pr(>|z|) | |
(Intercept) -5.6560349 0.3283270 -17.227 < 2e-16 *** | |
`Clinton Rally Occurred` 1.2019769 0.2479582 4.847 1.25e-06 *** | |
`Jewish Population Share` 30.2364876 1.3723678 22.032 < 2e-16 *** | |
`Hate Groups` 0.0220490 0.0022284 9.895 < 2e-16 *** | |
`Violent Crime Rate` 0.0049403 0.0009568 5.163 2.43e-07 *** | |
`Property Crime Rate` 0.0009619 0.0002473 3.890 0.00010 *** | |
`Romney 2012 Vote Share` -3.8853314 0.3499793 -11.102 < 2e-16 *** | |
`College Educated Share` 6.5095567 0.4140531 15.722 < 2e-16 *** | |
RegionNortheast 1.0783948 0.1448708 7.444 9.78e-14 *** | |
RegionSouth -0.3596049 0.1491072 -2.412 0.01588 * | |
RegionWest 0.3388020 0.1585812 2.136 0.03264 * | |
as.factor(month)2016-02-01 -0.0002848 0.2585157 -0.001 0.99912 | |
as.factor(month)2016-03-01 0.6465374 0.2358017 2.742 0.00611 ** | |
as.factor(month)2016-04-01 0.3598494 0.2448748 1.470 0.14169 | |
as.factor(month)2016-05-01 0.3858107 0.2439913 1.581 0.11382 | |
as.factor(month)2016-06-01 0.3817982 0.2441271 1.564 0.11783 | |
as.factor(month)2016-07-01 -0.0290382 0.2591198 -0.112 0.91077 | |
as.factor(month)2016-08-01 0.1650499 0.2510312 0.657 0.51087 | |
as.factor(month)2016-09-01 0.2340220 0.2482450 0.943 0.34583 | |
as.factor(month)2016-10-01 0.5177183 0.2388808 2.167 0.03021 * | |
as.factor(month)2016-11-01 1.1802676 0.2223231 5.309 1.10e-07 *** | |
as.factor(month)2016-12-01 0.7562779 0.2321419 3.258 0.00112 ** | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
(Dispersion parameter for Negative Binomial(0.2128) family taken to be 1) | |
Null deviance: 6713.9 on 37667 degrees of freedom | |
Residual deviance: 2498.3 on 37646 degrees of freedom | |
(36 observations deleted due to missingness) | |
AIC: 5930.7 | |
Number of Fisher Scoring iterations: 1 | |
Theta: 0.2128 | |
Std. Err.: 0.0144 | |
2 x log-likelihood: -5884.7350 | |
> ## pretty close! | |
> | |
> ## try to reproduce reason/population results | |
> f_reason2 = `Hate Incidents` ~ `Trump Rally Occurred` + | |
+ `Clinton Rally Occurred` + log_pop + `Jewish Population Share` + | |
+ `Hate Groups` + `Violent Crime Rate` + `Property Crime Rate` + | |
+ `Romney 2012 Vote Share` + `College Educated Share` + Region + | |
+ as.factor(month) | |
> r_reason2 = glm.nb(f_reason2, hate, control = glm.control(maxit = 50)) | |
> summary(r_reason2) | |
Call: | |
glm.nb(formula = f_reason2, data = hate, control = glm.control(maxit = 50), | |
init.theta = 0.7382578965, link = log) | |
Deviance Residuals: | |
Min 1Q Median 3Q Max | |
-2.2491 -0.0921 -0.0447 -0.0255 5.9145 | |
Coefficients: | |
Estimate Std. Error z value Pr(>|z|) | |
(Intercept) -1.903e+01 6.571e-01 -28.959 < 2e-16 *** | |
`Trump Rally Occurred` 1.675e-01 1.000e-01 1.676 0.093825 . | |
`Clinton Rally Occurred` 1.018e-01 1.878e-01 0.542 0.587970 | |
log_pop 1.173e+00 4.406e-02 26.614 < 2e-16 *** | |
`Jewish Population Share` 9.752e+00 1.022e+00 9.545 < 2e-16 *** | |
`Hate Groups` -5.409e-03 2.050e-03 -2.638 0.008327 ** | |
`Violent Crime Rate` 2.518e-03 1.997e-03 1.261 0.207283 | |
`Property Crime Rate` 8.116e-04 5.590e-04 1.452 0.146526 | |
`Romney 2012 Vote Share` -1.334e+00 3.515e-01 -3.796 0.000147 *** | |
`College Educated Share` 3.035e+00 4.385e-01 6.920 4.53e-12 *** | |
RegionNortheast 1.136e+00 1.342e-01 8.463 < 2e-16 *** | |
RegionSouth 1.620e-01 1.374e-01 1.180 0.238191 | |
RegionWest 3.924e-01 1.488e-01 2.638 0.008339 ** | |
as.factor(month)2016-02-01 -5.752e-02 2.217e-01 -0.259 0.795312 | |
as.factor(month)2016-03-01 5.883e-01 2.008e-01 2.930 0.003390 ** | |
as.factor(month)2016-04-01 2.502e-01 2.107e-01 1.187 0.235092 | |
as.factor(month)2016-05-01 2.823e-01 2.098e-01 1.346 0.178454 | |
as.factor(month)2016-06-01 1.668e-01 2.136e-01 0.781 0.435032 | |
as.factor(month)2016-07-01 -1.677e-01 2.260e-01 -0.742 0.457936 | |
as.factor(month)2016-08-01 6.837e-02 2.171e-01 0.315 0.752838 | |
as.factor(month)2016-09-01 1.582e-01 2.143e-01 0.738 0.460432 | |
as.factor(month)2016-10-01 4.877e-01 2.050e-01 2.379 0.017363 * | |
as.factor(month)2016-11-01 1.129e+00 1.915e-01 5.893 3.80e-09 *** | |
as.factor(month)2016-12-01 6.713e-01 2.007e-01 3.345 0.000824 *** | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
(Dispersion parameter for Negative Binomial(0.7383) family taken to be 1) | |
Null deviance: 8772.4 on 37667 degrees of freedom | |
Residual deviance: 2539.6 on 37644 degrees of freedom | |
(36 observations deleted due to missingness) | |
AIC: 5068.2 | |
Number of Fisher Scoring iterations: 1 | |
Theta: 0.7383 | |
Std. Err.: 0.0754 | |
2 x log-likelihood: -5018.1970 | |
> ## pretty close! | |
> | |
> | |
> ## now try with county fixed effects substituting for county-level | |
> ## predictors | |
> | |
> f_fe = `Hate Incidents` ~ `Trump Rally Occurred` + | |
+ `Clinton Rally Occurred` + as.factor(month) + Geoid | |
> ## r_fe = glm.nb(f_fe, hate, control = glm.control(maxit = 50)) | |
> ## ^ can't run for this model, glm.nb is too slow | |
> | |
> ## try again, removing counties without rallies | |
> rally_counties = unique(hate$Geoid[hate$`Trump Rally Occurred` | | |
+ hate$`Clinton Rally Occurred`]) | |
> hate2 = subset(hate, Geoid %in% rally_counties) | |
> r_fe = glm.nb(f_fe, hate2, control = glm.control(maxit = 50)) | |
> summary(r_fe) | |
Call: | |
glm.nb(formula = f_fe, data = hate2, control = glm.control(maxit = 50), | |
init.theta = 43.45759162, link = log) | |
Deviance Residuals: | |
Min 1Q Median 3Q Max | |
-2.3639 -0.3414 0.0000 0.0000 2.7873 | |
Coefficients: | |
Estimate Std. Error z value Pr(>|z|) | |
(Intercept) -5.246e+01 1.937e+07 0.000 1.00000 | |
`Trump Rally Occurred` 6.863e-02 1.641e-01 0.418 0.67584 | |
`Clinton Rally Occurred` -1.462e-01 1.833e-01 -0.798 0.42496 | |
as.factor(month)2016-02-01 -3.388e-02 2.646e-01 -0.128 0.89811 | |
as.factor(month)2016-03-01 5.773e-01 2.349e-01 2.458 0.01399 * | |
as.factor(month)2016-04-01 4.285e-01 2.474e-01 1.732 0.08324 . | |
as.factor(month)2016-05-01 1.244e-01 2.662e-01 0.467 0.64017 | |
as.factor(month)2016-06-01 -9.716e-02 2.800e-01 -0.347 0.72860 | |
as.factor(month)2016-07-01 -2.063e-01 2.904e-01 -0.710 0.47754 | |
as.factor(month)2016-08-01 -2.389e-01 2.979e-01 -0.802 0.42253 | |
as.factor(month)2016-09-01 8.578e-02 2.852e-01 0.301 0.76362 | |
as.factor(month)2016-10-01 5.448e-01 2.744e-01 1.986 0.04708 * | |
as.factor(month)2016-11-01 1.319e+00 2.574e-01 5.125 2.98e-07 *** | |
as.factor(month)2016-12-01 8.574e-01 2.676e-01 3.205 0.00135 ** | |
Geoid1097 5.026e+01 1.937e+07 0.000 1.00000 | |
Geoid4013 5.151e+01 1.937e+07 0.000 1.00000 | |
Geoid4019 5.062e+01 1.937e+07 0.000 1.00000 | |
Geoid4025 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid5007 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid5119 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid6019 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid6059 5.114e+01 1.937e+07 0.000 1.00000 | |
Geoid6067 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid6073 5.297e+01 1.937e+07 0.000 1.00000 | |
Geoid6085 5.161e+01 1.937e+07 0.000 1.00000 | |
Geoid6089 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid8001 1.519e+01 2.740e+07 0.000 1.00000 | |
Geoid8031 5.267e+01 1.937e+07 0.000 1.00000 | |
Geoid8041 4.954e+01 1.937e+07 0.000 1.00000 | |
Geoid8059 5.064e+01 1.937e+07 0.000 1.00000 | |
Geoid8069 5.024e+01 1.937e+07 0.000 1.00000 | |
Geoid8077 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid8101 1.515e+01 2.740e+07 0.000 1.00000 | |
Geoid8123 5.093e+01 1.937e+07 0.000 1.00000 | |
Geoid9001 5.209e+01 1.937e+07 0.000 1.00000 | |
Geoid9003 5.131e+01 1.937e+07 0.000 1.00000 | |
Geoid9009 5.216e+01 1.937e+07 0.000 1.00000 | |
Geoid10001 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid12005 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid12009 5.023e+01 1.937e+07 0.000 1.00000 | |
Geoid12011 5.295e+01 1.937e+07 0.000 1.00000 | |
Geoid12021 5.115e+01 1.937e+07 0.000 1.00000 | |
Geoid12031 5.023e+01 1.937e+07 0.000 1.00000 | |
Geoid12033 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid12057 5.068e+01 1.937e+07 0.000 1.00000 | |
Geoid12071 5.024e+01 1.937e+07 0.000 1.00000 | |
Geoid12073 5.115e+01 1.937e+07 0.000 1.00000 | |
Geoid12083 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid12086 5.282e+01 1.937e+07 0.000 1.00000 | |
Geoid12095 5.097e+01 1.937e+07 0.000 1.00000 | |
Geoid12097 5.031e+01 1.937e+07 0.000 1.00000 | |
Geoid12099 5.332e+01 1.937e+07 0.000 1.00000 | |
Geoid12101 1.516e+01 2.740e+07 0.000 1.00000 | |
Geoid12103 5.103e+01 1.937e+07 0.000 1.00000 | |
Geoid12105 4.955e+01 1.937e+07 0.000 1.00000 | |
Geoid12109 4.955e+01 1.937e+07 0.000 1.00000 | |
Geoid12111 1.518e+01 2.740e+07 0.000 1.00000 | |
Geoid12115 4.955e+01 1.937e+07 0.000 1.00000 | |
Geoid12117 4.959e+01 1.937e+07 0.000 1.00000 | |
Geoid12127 5.030e+01 1.937e+07 0.000 1.00000 | |
Geoid13121 5.281e+01 1.937e+07 0.000 1.00000 | |
Geoid13185 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid17113 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid18003 5.022e+01 1.937e+07 0.000 1.00000 | |
Geoid18057 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid18097 5.021e+01 1.937e+07 0.000 1.00000 | |
Geoid18141 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid18163 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid18167 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid19013 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19033 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19045 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19061 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19103 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19113 1.511e+01 2.740e+07 0.000 1.00000 | |
Geoid19125 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19127 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19139 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19153 1.513e+01 2.740e+07 0.000 1.00000 | |
Geoid19155 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19163 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19167 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19169 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19179 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19181 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid19193 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid20173 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid21111 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid22033 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid22071 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid23001 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid23005 5.090e+01 1.937e+07 0.000 1.00000 | |
Geoid23019 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid24043 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid24047 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid25017 5.345e+01 1.937e+07 0.000 1.00000 | |
Geoid26045 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid26081 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid26099 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid26125 5.161e+01 1.937e+07 0.000 1.00000 | |
Geoid26139 4.962e+01 1.937e+07 0.000 1.00000 | |
Geoid26163 5.075e+01 1.937e+07 0.000 1.00000 | |
Geoid26165 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid27053 5.174e+01 1.937e+07 0.000 1.00000 | |
Geoid28047 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid28049 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid28089 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid29095 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid29510 5.091e+01 1.937e+07 0.000 1.00000 | |
Geoid30111 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid31055 5.191e+01 1.937e+07 0.000 1.00000 | |
Geoid32003 5.028e+01 1.937e+07 0.000 1.00000 | |
Geoid32031 1.513e+01 2.740e+07 0.000 1.00000 | |
Geoid33001 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid33009 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid33011 5.067e+01 1.937e+07 0.000 1.00000 | |
Geoid33013 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid33015 5.020e+01 1.937e+07 0.000 1.00000 | |
Geoid33017 4.958e+01 1.937e+07 0.000 1.00000 | |
Geoid33019 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid35001 5.147e+01 1.937e+07 0.000 1.00000 | |
Geoid36001 4.952e+01 1.937e+07 0.000 1.00000 | |
Geoid36019 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid36027 5.021e+01 1.937e+07 0.000 1.00000 | |
Geoid36029 5.022e+01 1.937e+07 0.000 1.00000 | |
Geoid36045 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid36055 4.952e+01 1.937e+07 0.000 1.00000 | |
Geoid36059 5.323e+01 1.937e+07 0.000 1.00000 | |
Geoid36065 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid36067 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid37021 4.954e+01 1.937e+07 0.000 1.00000 | |
Geoid37025 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid37051 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid37061 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid37067 1.514e+01 2.740e+07 0.000 1.00000 | |
Geoid37081 1.514e+01 2.740e+07 0.000 1.00000 | |
Geoid37089 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid37101 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid37107 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid37119 5.031e+01 1.937e+07 0.000 1.00000 | |
Geoid37129 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid37147 1.514e+01 2.740e+07 0.000 1.00000 | |
Geoid37183 1.515e+01 2.740e+07 0.000 1.00000 | |
Geoid39007 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid39013 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid39023 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid39027 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid39035 5.154e+01 1.937e+07 0.000 1.00000 | |
Geoid39041 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid39049 5.099e+01 1.937e+07 0.000 1.00000 | |
Geoid39061 1.514e+01 2.740e+07 0.000 1.00000 | |
Geoid39095 1.514e+01 2.740e+07 0.000 1.00000 | |
Geoid39099 1.521e+01 2.740e+07 0.000 1.00000 | |
Geoid39113 5.021e+01 1.937e+07 0.000 1.00000 | |
Geoid39133 1.517e+01 2.740e+07 0.000 1.00000 | |
Geoid39151 4.954e+01 1.937e+07 0.000 1.00000 | |
Geoid39153 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid39155 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid40109 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid40143 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid41039 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid42003 4.961e+01 1.937e+07 0.000 1.00000 | |
Geoid42007 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid42013 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid42017 5.115e+01 1.937e+07 0.000 1.00000 | |
Geoid42021 1.519e+01 2.739e+07 0.000 1.00000 | |
Geoid42029 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid42041 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid42043 5.030e+01 1.937e+07 0.000 1.00000 | |
Geoid42045 5.149e+01 1.937e+07 0.000 1.00000 | |
Geoid42049 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid42069 1.516e+01 2.740e+07 0.000 1.00000 | |
Geoid42071 5.064e+01 1.937e+07 0.000 1.00000 | |
Geoid42079 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid42091 5.161e+01 1.937e+07 0.000 1.00000 | |
Geoid42101 5.260e+01 1.937e+07 0.000 1.00000 | |
Geoid44003 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid45003 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45007 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45013 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45019 5.090e+01 1.937e+07 0.000 1.00000 | |
Geoid45021 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45029 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45041 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45043 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45045 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid45051 4.951e+01 1.937e+07 0.000 1.00000 | |
Geoid45063 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45085 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid45091 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid47157 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid48113 4.953e+01 1.937e+07 0.000 1.00000 | |
Geoid48339 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid48439 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid48453 5.148e+01 1.937e+07 0.000 1.00000 | |
Geoid49035 5.021e+01 1.937e+07 0.000 1.00000 | |
Geoid50007 5.020e+01 1.937e+07 0.000 1.00000 | |
Geoid51107 4.954e+01 1.937e+07 0.000 1.00000 | |
Geoid51630 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid51680 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid51750 1.507e+01 2.737e+07 0.000 1.00000 | |
Geoid51760 4.953e+01 1.937e+07 0.000 1.00000 | |
Geoid51770 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid51810 1.512e+01 2.734e+07 0.000 1.00000 | |
Geoid53061 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid53063 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid53073 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid54039 1.509e+01 2.736e+07 0.000 1.00000 | |
Geoid55009 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid55031 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid55035 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid55063 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid55073 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid55079 5.241e+01 1.937e+07 0.000 1.00000 | |
Geoid55087 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid55101 1.508e+01 2.736e+07 0.000 1.00000 | |
Geoid55105 1.508e+01 2.737e+07 0.000 1.00000 | |
Geoid55131 1.511e+01 2.735e+07 0.000 1.00000 | |
Geoid55133 1.511e+01 2.735e+07 0.000 1.00000 | |
--- | |
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 | |
(Dispersion parameter for Negative Binomial(43.4576) family taken to be 1) | |
Null deviance: 2594.56 on 2471 degrees of freedom | |
Residual deviance: 699.32 on 2253 degrees of freedom | |
AIC: 1821.5 | |
Number of Fisher Scoring iterations: 1 | |
Theta: 43.5 | |
Std. Err.: 77.1 | |
2 x log-likelihood: -1381.475 | |
> ## finds smaller Trump rally association but greater | |
> ## uncertainty. Neither Trump nor Clinton rally effects are | |
> ## statistically significant |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment