Created
August 19, 2019 04:31
-
-
Save wlinInspire/48ce2ebe0d4265c16dbf10de79933ced to your computer and use it in GitHub Desktop.
Calculating Life Time Value for Subscription Products
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(survival) | |
library(data.table) | |
library(ggplot2) | |
data = read.csv('https://raw.githubusercontent.com/IBM/invoke-wml-using-cognos-custom-control/master/data/Telco-Customer-Churn.csv') | |
setDT(data) | |
churn_data <- data[, churn_flag := ifelse(Churn == 'Yes', 1, 0)] | |
km_curve <- survfit(Surv(tenure, churn_flag) ~ 1, data=churn_data) | |
# Calculate KM Survival and Churn Rate | |
km_curve_df = summary(km_curve) | |
curve = data.table(cycle = km_curve_df$time, | |
survival_rate = km_curve_df$surv, | |
churn_rate = km_curve_df$n.event / km_curve_df$n.risk) | |
# Expand dataset | |
max_tenure <- data.table(cycle = 0:max(curve$cycle)) | |
max_tenure[, cycle_join := cycle] | |
data[, cycle_join := tenure] | |
churn_data_total <- max_tenure[data, on = .(cycle_join <= cycle_join), allow.cartesian = TRUE] | |
churn_data_total[cycle < tenure, churn_flag := 0] | |
churn_data_total <- churn_data_total[cycle >= 1] | |
churn_data_total[, special_cycle := 1] | |
churn_data_total[cycle > 1, special_cycle := 0] | |
h2o::h2o.init() | |
churn_data_train_h2o <- h2o::as.h2o(churn_data_total) | |
fit <- h2o::h2o.glm(y = 'churn_flag', | |
x = c('cycle', 'special_cycle'), | |
training_frame = churn_data_train_h2o, | |
family = 'binomial', | |
lambda = 0) | |
# Predict | |
curve_lr <- data.table(cycle = 1:500) | |
curve_lr[, special_cycle := 1] | |
curve_lr[cycle > 1, special_cycle := 0] | |
curve_lr_h2o <- h2o::as.h2o(curve_lr) | |
pred <- h2o::h2o.predict(fit, curve_lr_h2o) %>% as.data.table() | |
pred <- pred[, p1] | |
# Attrition Curve Comparison | |
curve_lr <- cbind(curve_lr, churn_rate = pred) | |
curve_lr <- curve_lr[order(cycle)] | |
curve_lr[, survival_rate := cumprod(1 - churn_rate)] | |
# Compare Attrition Curve of Raw and Logisitic Regression | |
ggplot() + | |
geom_line(aes(curve$cycle, curve$churn_rate, col = 'raw')) + | |
geom_line(aes(x = curve_lr$cycle, y = curve_lr$churn_rate, col = 'fit')) + | |
scale_y_continuous(labels = scales::percent) + | |
xlab('cycle') + | |
ylab('churn_rate') + | |
theme_minimal() | |
# Compare Survival Curve of Raw and Logisitic Regression | |
ggplot() + | |
geom_line(aes(x = curve$cycle, y = curve$survival_rate, col = 'raw')) + | |
geom_line(aes(x = curve_lr$cycle, y = curve_lr$survival_rate, col = 'fit')) + | |
scale_x_continuous(name = 'cycle', limits = c(0, 500)) + | |
scale_y_continuous(labels = scales::percent, name = 'survival_rate', limits = c(0,1)) + | |
theme_minimal() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment