Forked from dbc-challenges/0.2.1-boggle_class_from_methods.rb
Last active
January 2, 2016 07:59
-
-
Save whwebdev/8273801 to your computer and use it in GitHub Desktop.
phase 0 unit 2 week 1
boggle class challenge
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class BoggleBoard | |
attr_reader :dice_grid | |
def initialize(dice_grid) | |
@dice_grid = dice_grid | |
end | |
def create_word(*coords) | |
coords.map { |coord| @dice_grid[coord.first][coord.last]}.join("") | |
end | |
def get_row(row) | |
@dice_grid[row] | |
end | |
def get_col(col) | |
@dice_grid.collect{|i| i[col]} | |
end | |
def get_diagonal(start_coord, end_coord) | |
diagonal_words = [] | |
x = start_coord[0] | |
y = start_coord[1] | |
left_coord_distance = (start_coord[0] - end_coord[0]).abs | |
right_coord_distance = (start_coord[1] - end_coord[1]).abs | |
if left_coord_distance == right_coord_distance | |
diagonal_words.push(@dice_grid[x][y]) | |
case true | |
when start_coord[0] < end_coord[0] && start_coord[1] < end_coord[1] #(s/e) diag | |
left_coord_distance.times{ | |
x += 1 | |
y += 1 | |
diagonal_words.push(@dice_grid[x][y]) | |
} | |
when start_coord[0] < end_coord[0] && start_coord[1] > end_coord[1] #(s/w) diag | |
left_coord_distance.times{ | |
x += 1 | |
y -= 1 | |
diagonal_words.push(@dice_grid[x][y]) | |
} | |
when start_coord[0] > end_coord[0] && start_coord[1] > end_coord[1] #(n/w) diag | |
left_coord_distance.times{ | |
x -= 1 | |
y -= 1 | |
diagonal_words.push(@dice_grid[x][y]) | |
} | |
when start_coord[0] > end_coord[0] && start_coord[1] < end_coord[1] #(n/e) diag | |
left_coord_distance.times{ | |
x -= 1 | |
y += 1 | |
diagonal_words.push(@dice_grid[x][y]) | |
} | |
end | |
diagonal_words | |
else | |
"Not a diagonal!" | |
end | |
end | |
end | |
dice_grid = [["b", "r", "a", "e"], | |
["i", "o", "d", "t"], | |
["e", "c", "l", "r"], | |
["t", "a", "k", "e"]] | |
boggle_board = BoggleBoard.new(dice_grid) | |
# # implement tests for each of the methods here: | |
p boggle_board.create_word([2,1], [1,1], [1,2], [0,3]) #=> returns "code" | |
p boggle_board.create_word([0,1], [0,2], [1,2]) #=> returns "rad" | |
p boggle_board.create_word([2,2], [1,1], [2,1], [3,2]) #=> returns "lock" | |
p boggle_board.create_word([1,3], [2,3], [3,3], [3,2]) #=> returns "trek" | |
p boggle_board.get_row(0) #=> ["b", "r", "a", "e"] | |
p boggle_board.get_row(1) #=> ["i", "o", "d", "t"] | |
p boggle_board.get_row(2) #=> ["e", "c", "l", "r"] | |
p boggle_board.get_row(3) #=> ["t", "a", "k", "e"] | |
p boggle_board.get_col(0) #=> ["b", "i", "e", "t",] | |
p boggle_board.get_col(1) #=> ["r", "o", "c", "a"] | |
p boggle_board.get_col(2) #=> ["a", "d", "l", "k"] | |
p boggle_board.get_col(3) #=> ["e", "t", "r", "e"] | |
# # create driver test code to retrieve a value at a coordinate here: | |
p (boggle_board.dice_grid[3][2] == 'k') == true #==> returns true if working | |
# Bonus: create a #get_diagonal method | |
#long diagonal test | |
p boggle_board.get_diagonal([0,0],[3,3]) #==> ["b", "o", "l", "e"] | |
p boggle_board.get_diagonal([0,3],[3,0]) #==> ["e", "d", "c", "t"] | |
p boggle_board.get_diagonal([3,3],[0,0]) #==> ["e", "l", "o", "b"] | |
p boggle_board.get_diagonal([3,0],[0,3]) #==> ["t", "c", "d", "e"] | |
#short diagonal test | |
p boggle_board.get_diagonal([1,0],[3,2]) #==> ["i", "c", "k"] | |
p boggle_board.get_diagonal([0,2],[2,0]) #==> ["a", "o", "e"] | |
p boggle_board.get_diagonal([2,3],[0,1]) #==> ["r", "d", "r"] | |
p boggle_board.get_diagonal([3,1],[1,3]) #==> ["a", "l", "t"] | |
#not a diagonal test | |
p boggle_board.get_diagonal([0,0],[3,2]) #==> "Not a diagonal!" | |
p boggle_board.get_diagonal([1,0],[2,3]) #==> "Not a diagonal!" | |
p boggle_board.get_diagonal([0,2],[3,0]) #==> "Not a diagonal!" | |
p boggle_board.get_diagonal([3,1],[0,2]) #==> "Not a diagonal!" | |
#Review and Reflect | |
# The object oriented aspect vs. procedural part wasn't difficult. Figuring out how to return the | |
# diagonals was!!! | |
# I know there is probably a more succinct way of doing what I did with the diagonal method I made, | |
# but I'm proud of myself for thinking it out logically and finding a way to do it. Where my mind | |
# is already going with refactoring is the correlation between the signs on the distance... | |
# I had a lot of fun with this one mostly because it took a lot of time and was the most challenging yet. | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment