Created
November 12, 2017 08:25
-
-
Save vrajesh26/2dc2677c5799f8c569cced73525eb459 to your computer and use it in GitHub Desktop.
To predict loan defaulters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import style | |
style.use("ggplot") | |
from sklearn import svm | |
import ggplot as ggp | |
from sklearn.model_selection import train_test_split | |
Data_main=pd.read_csv(filepath_or_buffer='D:\loan_data.csv') | |
np.sum(Data_main.isnull()) | |
ggp.ggplot(Data_main,ggp.aes(x='fico'))+ggp.geom_density(color='red')+ggp.geom_histogram(fill='blue')+ggp.facet_grid('not.fully.paid','credit.policy') | |
Data_main.describe() | |
y=Data_main['not.fully.paid'] | |
X=Data_main.drop('not.fully.paid',axis=1) | |
y.shape,X.shape | |
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=123) | |
X_train.shape,X_test.shape,y_test.shape,y_train.shape | |
from sklearn import preprocessing | |
X_scaledTest=preprocessing.scale(X_test[['int.rate','installment','log.annual.inc','dti','fico','days.with.cr.line','revol.bal','revol.util','inq.last.6mths','delinq.2yrs','pub.rec']]) | |
X_scaledTrain=preprocessing.scale(X_train[['int.rate','installment','log.annual.inc','dti','fico','days.with.cr.line','revol.bal','revol.util','inq.last.6mths','delinq.2yrs','pub.rec']]) | |
model=svm.SVC(kernel='linear',C=1,gamma=1) | |
model.fit(X_scaledTrain,y_train) | |
from sklearn.metrics import accuracy_score | |
accuracy_score(y_test,model.predict(X_scaledTest)) | |
from sklearn.model_selection import GridSearchCV | |
from sklearn.metrics import classification_report | |
parameters = [{'kernel': ['rbf'], | |
'gamma': [1e-4, 1e-3, 0.01, 0.1, 0.2, 0.5], | |
'C': [1, 10, 100, 1000]}, | |
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] | |
model_T=svm.SVC(kernel='rbf',C=1,gamma=1) | |
model_T.fit(X_scaledTrain,y_train) | |
accuracy_score(y_test,model_T.predict(X_scaledTest)) | |
tune=GridSearchCV(cv=None, error_score='raise', | |
estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, | |
decision_function_shape=None, degree=3, gamma='auto', kernel='rbf', | |
max_iter=-1, probability=False, random_state=None, shrinking=True, | |
tol=0.001, verbose=False), | |
fit_params={}, iid=True, n_jobs=-1, | |
param_grid=parameters | |
pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0) | |
tune.fit(X_scaledTrain,y_train) | |
accuracy_score(y_test,tune.predict(X_scaledTest)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment