Created
November 12, 2017 17:05
-
-
Save vjethava/1540fbb4322bdf2de3dcecaafc0afcea to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib | |
import matplotlib.pyplot as plt | |
import tensorflow as tf | |
import time | |
def get_times(maximum_time): | |
device_times = { | |
"/gpu:0":[], | |
"/cpu:0":[] | |
} | |
matrix_sizes = [500, 1000, 1500, 2000] | |
for size in matrix_sizes: | |
for device_name in device_times.keys(): | |
print("####### Calculating on the " + device_name + " #######") | |
shape = (size,size) | |
data_type = tf.float16 | |
with tf.device(device_name): | |
r1 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
r2 = tf.random_uniform(shape=shape, minval=0, maxval=1, dtype=data_type) | |
dot_operation = tf.matmul(r2, r1) | |
with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as session: | |
start_time = time.time() | |
result = session.run(dot_operation) | |
time_taken = time.time() - start_time | |
print(result) | |
device_times[device_name].append(time_taken) | |
print(device_times) | |
#if time_taken > maximum_time: | |
# return device_times, matrix_sizes | |
return device_times, matrix_sizes | |
device_times, matrix_sizes = get_times(60) | |
gpu_times = device_times["/gpu:0"] | |
cpu_times = device_times["/cpu:0"] | |
plt.plot(matrix_sizes[:len(gpu_times)], gpu_times, 's-.') | |
plt.plot(matrix_sizes[:len(cpu_times)], cpu_times, 'o-') | |
plt.ylabel('Time') | |
plt.xlabel('Matrix size') | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment