Created
June 16, 2019 18:53
-
-
Save victorkohler/a6019cc098782d92bb74f45585a752a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#------------- | |
# HYPERPARAMS | |
#------------- | |
num_neg = 6 | |
latent_features = 8 | |
epochs = 20 | |
batch_size = 256 | |
learning_rate = 0.001 | |
#------------------------- | |
# TENSORFLOW GRAPH | |
#------------------------- | |
graph = tf.Graph() | |
with graph.as_default(): | |
# Define input placeholders for user, item and label. | |
user = tf.placeholder(tf.int32, shape=(None, 1)) | |
item = tf.placeholder(tf.int32, shape=(None, 1)) | |
label = tf.placeholder(tf.int32, shape=(None, 1)) | |
# User embedding for MLP | |
mlp_u_var = tf.Variable(tf.random_normal([len(users), 32], stddev=0.05), | |
name='mlp_user_embedding') | |
mlp_user_embedding = tf.nn.embedding_lookup(mlp_u_var, user) | |
# Item embedding for MLP | |
mlp_i_var = tf.Variable(tf.random_normal([len(items), 32], stddev=0.05), | |
name='mlp_item_embedding') | |
mlp_item_embedding = tf.nn.embedding_lookup(mlp_i_var, item) | |
# User embedding for GMF | |
gmf_u_var = tf.Variable(tf.random_normal([len(users), latent_features], | |
stddev=0.05), name='gmf_user_embedding') | |
gmf_user_embedding = tf.nn.embedding_lookup(gmf_u_var, user) | |
# Item embedding for GMF | |
gmf_i_var = tf.Variable(tf.random_normal([len(items), latent_features], | |
stddev=0.05), name='gmf_item_embedding') | |
gmf_item_embedding = tf.nn.embedding_lookup(gmf_i_var, item) | |
# Our GMF layers | |
gmf_user_embed = tf.keras.layers.Flatten()(gmf_user_embedding) | |
gmf_item_embed = tf.keras.layers.Flatten()(gmf_item_embedding) | |
gmf_matrix = tf.multiply(gmf_user_embed, gmf_item_embed) | |
# Our MLP layers | |
mlp_user_embed = tf.keras.layers.Flatten()(mlp_user_embedding) | |
mlp_item_embed = tf.keras.layers.Flatten()(mlp_item_embedding) | |
mlp_concat = tf.keras.layers.concatenate([mlp_user_embed, mlp_item_embed]) | |
mlp_dropout = tf.keras.layers.Dropout(0.2)(mlp_concat) | |
mlp_layer_1 = tf.keras.layers.Dense(64, activation='relu', name='layer1')(mlp_dropout) | |
mlp_batch_norm1 = tf.keras.layers.BatchNormalization(name='batch_norm1')(mlp_layer_1) | |
mlp_dropout1 = tf.keras.layers.Dropout(0.2, name='dropout1')(mlp_batch_norm1) | |
mlp_layer_2 = tf.keras.layers.Dense(32, activation='relu', name='layer2')(mlp_dropout1) | |
mlp_batch_norm2 = tf.keras.layers.BatchNormalization(name='batch_norm1')(mlp_layer_2) | |
mlp_dropout2 = tf.keras.layers.Dropout(0.2, name='dropout1')(mlp_batch_norm2) | |
mlp_layer_3 = tf.keras.layers.Dense(16, activation='relu', name='layer3')(mlp_dropout2) | |
mlp_layer_4 = tf.keras.layers.Dense(8, activation='relu', name='layer4')(mlp_layer_3) | |
# We merge the two networks together | |
merged_vector = tf.keras.layers.concatenate([gmf_matrix, mlp_layer_4]) | |
# Our final single neuron output layer. | |
output_layer = tf.keras.layers.Dense(1, | |
kernel_initializer="lecun_uniform", | |
name='output_layer')(merged_vector) | |
# Our loss function as a binary cross entropy. | |
loss = tf.losses.sigmoid_cross_entropy(label, output_layer) | |
# Train using the Adam optimizer to minimize our loss. | |
opt = tf.train.AdamOptimizer(learning_rate = learning_rate) | |
step = opt.minimize(loss) | |
# Initialize all tensorflow variables. | |
init = tf.global_variables_initializer() | |
session = tf.Session(config=None, graph=graph) | |
session.run(init) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment