Last active
October 4, 2016 09:05
-
-
Save victorhcm/c6966f5f4a45c8dad84db07b57d3575b to your computer and use it in GitHub Desktop.
Updated VGG_FACE prototxt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "VGG_FACE_16_layer" | |
| input: "data" | |
| input_dim: 1 | |
| input_dim: 3 | |
| input_dim: 224 | |
| input_dim: 224 | |
| layer { | |
| name: "data" | |
| type: "Data" | |
| top: "data" | |
| top: "label" | |
| } | |
| layer { | |
| bottom: "data" | |
| top: "conv1_1" | |
| name: "conv1_1" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 64 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv1_1" | |
| top: "conv1_1" | |
| name: "relu1_1" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv1_1" | |
| top: "conv1_2" | |
| name: "conv1_2" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 64 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv1_2" | |
| top: "conv1_2" | |
| name: "relu1_2" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv1_2" | |
| top: "pool1" | |
| name: "pool1" | |
| type: "Pooling" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| bottom: "pool1" | |
| top: "conv2_1" | |
| name: "conv2_1" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 128 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv2_1" | |
| top: "conv2_1" | |
| name: "relu2_1" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv2_1" | |
| top: "conv2_2" | |
| name: "conv2_2" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 128 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv2_2" | |
| top: "conv2_2" | |
| name: "relu2_2" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv2_2" | |
| top: "pool2" | |
| name: "pool2" | |
| type: "Pooling" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| bottom: "pool2" | |
| top: "conv3_1" | |
| name: "conv3_1" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv3_1" | |
| top: "conv3_1" | |
| name: "relu3_1" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv3_1" | |
| top: "conv3_2" | |
| name: "conv3_2" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv3_2" | |
| top: "conv3_2" | |
| name: "relu3_2" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv3_2" | |
| top: "conv3_3" | |
| name: "conv3_3" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 256 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv3_3" | |
| top: "conv3_3" | |
| name: "relu3_3" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv3_3" | |
| top: "pool3" | |
| name: "pool3" | |
| type: "Pooling" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| bottom: "pool3" | |
| top: "conv4_1" | |
| name: "conv4_1" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv4_1" | |
| top: "conv4_1" | |
| name: "relu4_1" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv4_1" | |
| top: "conv4_2" | |
| name: "conv4_2" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv4_2" | |
| top: "conv4_2" | |
| name: "relu4_2" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv4_2" | |
| top: "conv4_3" | |
| name: "conv4_3" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv4_3" | |
| top: "conv4_3" | |
| name: "relu4_3" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv4_3" | |
| top: "pool4" | |
| name: "pool4" | |
| type: "Pooling" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| bottom: "pool4" | |
| top: "conv5_1" | |
| name: "conv5_1" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv5_1" | |
| top: "conv5_1" | |
| name: "relu5_1" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv5_1" | |
| top: "conv5_2" | |
| name: "conv5_2" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv5_2" | |
| top: "conv5_2" | |
| name: "relu5_2" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv5_2" | |
| top: "conv5_3" | |
| name: "conv5_3" | |
| type: "Convolution" | |
| convolution_param { | |
| num_output: 512 | |
| pad: 1 | |
| kernel_size: 3 | |
| } | |
| } | |
| layer { | |
| bottom: "conv5_3" | |
| top: "conv5_3" | |
| name: "relu5_3" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "conv5_3" | |
| top: "pool5" | |
| name: "pool5" | |
| type: "Pooling" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| bottom: "pool5" | |
| top: "fc6" | |
| name: "fc6" | |
| type: "InnerProduct" | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| bottom: "fc6" | |
| top: "fc6" | |
| name: "relu6" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "fc6" | |
| top: "fc6" | |
| name: "drop6" | |
| type: "Dropout" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| } | |
| } | |
| layer { | |
| bottom: "fc6" | |
| top: "fc7" | |
| name: "fc7" | |
| type: "InnerProduct" | |
| inner_product_param { | |
| num_output: 4096 | |
| } | |
| } | |
| layer { | |
| bottom: "fc7" | |
| top: "fc7" | |
| name: "relu7" | |
| type: "ReLU" | |
| } | |
| layer { | |
| bottom: "fc7" | |
| top: "fc7" | |
| name: "drop7" | |
| type: "Dropout" | |
| dropout_param { | |
| dropout_ratio: 0.5 | |
| } | |
| } | |
| layer { | |
| bottom: "fc7" | |
| top: "fc8" | |
| name: "fc8" | |
| type: "InnerProduct" | |
| inner_product_param { | |
| num_output: 2622 | |
| } | |
| } | |
| layer { | |
| bottom: "fc8" | |
| top: "prob" | |
| name: "prob" | |
| type: "Softmax" | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment