Created
August 21, 2015 21:19
-
-
Save tscohen/c0f29b5ff0b5e978cfc5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import string | |
import numpy as np | |
import theano | |
import theano.tensor as T | |
from theano.sandbox.cuda import cuda_available, GpuOp | |
from theano.ifelse import ifelse | |
if cuda_available: | |
from theano.sandbox.cuda import (basic_ops, CudaNdarrayType, | |
CudaNdarray) | |
from theano.misc.pycuda_init import pycuda_available | |
if pycuda_available: | |
import pycuda.gpuarray | |
try: | |
import scikits.cuda | |
from scikits.cuda import fft, cublas | |
scikits.cuda.misc.init() | |
scikits_cuda_available = True | |
except ImportError: | |
scikits_cuda_available = False | |
# TODO: investigate the effect of enabling fastmath on FFT performance | |
# (how can it be enabled?). | |
# base class for shared code between scikits.cuda-based ops | |
class ScikitsCudaOp(GpuOp): | |
def __eq__(self, other): | |
return type(self) == type(other) | |
def __hash__(self): | |
return hash(type(self)) | |
def __str__(self): | |
return self.__class__.__name__ | |
def output_type(self, inp): | |
raise NotImplementedError | |
def make_node(self, inp): | |
inp = basic_ops.gpu_contiguous( | |
basic_ops.as_cuda_ndarray_variable(inp)) | |
assert inp.dtype == "float32" | |
return theano.Apply(self, [inp], [self.output_type(inp)()]) | |
def make_thunk(self, node, storage_map, _, _2): | |
if not scikits_cuda_available: | |
raise RuntimeError( | |
"scikits.cuda is needed for all GPU fft implementation," | |
" including fftconv.") | |
class CuFFTOp(ScikitsCudaOp): | |
def output_type(self, inp): | |
return CudaNdarrayType( | |
broadcastable=[False] * inp.type.ndim) | |
# TODO: make broadcast-preserving | |
# for some reason, this does not work: | |
#return CudaNdarrayType( | |
# broadcastable=inp.broadcastable + (False,)) | |
def make_thunk(self, node, storage_map, _, _2): | |
super(CuFFTOp, self).make_thunk(node, storage_map, _, _2) | |
from theano.misc.pycuda_utils import to_gpuarray | |
inputs = [storage_map[v] for v in node.inputs] | |
outputs = [storage_map[v] for v in node.outputs] | |
plan_input_shape = [None] | |
plan = [None] | |
def thunk(): | |
input_shape = inputs[0][0].shape | |
# construct output shape | |
output_shape = tuple(input_shape) | |
# print 'FFT shapes:', input_shape, '->', output_shape | |
# print 'Batch size:', input_shape[0] | |
# print 'Core shape:', input_shape[1:-1] | |
z = outputs[0] | |
# only allocate if there is no previous allocation of the right size. | |
if z[0] is None or z[0].shape != output_shape: | |
z[0] = CudaNdarray.zeros(output_shape) | |
input_pycuda = to_gpuarray(inputs[0][0]) | |
# I thought we'd need to change the type on output_pycuda | |
# so it is complex64, but as it turns out scikits.cuda.fft | |
# doesn't really care either way and treats the array as | |
# if it is complex64 anyway. | |
output_pycuda = to_gpuarray(z[0]) | |
# only initialise plan if necessary | |
if plan[0] is None or plan_input_shape[0] != input_shape: | |
plan_input_shape[0] = input_shape | |
plan[0] = fft.Plan(shape=input_shape[1:-1], # Exclude batch dim and complex dim | |
in_dtype=np.complex64, | |
out_dtype=np.complex64, | |
batch=input_shape[0]) | |
fft.fft(input_pycuda, output_pycuda, plan[0]) | |
thunk.inputs = inputs | |
thunk.outputs = outputs | |
thunk.lazy = False | |
return thunk | |
def grad(self, inputs, output_grads): | |
return [cuifft(output_grads[0])] | |
class CuIFFTOp(ScikitsCudaOp): | |
def output_type(self, inp): | |
# remove extra real/imag dim | |
return CudaNdarrayType( | |
broadcastable=[False] * inp.type.ndim) | |
def make_thunk(self, node, storage_map, _, _2): | |
super(CuIFFTOp, self).make_thunk(node, storage_map, _, _2) | |
from theano.misc.pycuda_utils import to_gpuarray | |
inputs = [storage_map[v] for v in node.inputs] | |
outputs = [storage_map[v] for v in node.outputs] | |
plan_input_shape = [None] | |
plan = [None] | |
def thunk(): | |
input_shape = inputs[0][0].shape | |
# construct output shape | |
output_shape = tuple(input_shape) | |
z = outputs[0] | |
# only allocate if there is no previous allocation of the | |
# right size. | |
if z[0] is None or z[0].shape != output_shape: | |
z[0] = CudaNdarray.zeros(output_shape) | |
input_pycuda = to_gpuarray(inputs[0][0]) | |
# input_pycuda is a float32 array with an extra dimension, | |
# but will be interpreted by scikits.cuda as a complex64 | |
# array instead. | |
output_pycuda = to_gpuarray(z[0]) | |
# only initialise plan if necessary | |
if plan[0] is None or plan_input_shape[0] != input_shape: | |
plan_input_shape[0] = input_shape | |
plan[0] = fft.Plan(output_shape[1:-1], np.complex64, np.complex64, | |
batch=output_shape[0]) | |
fft.ifft(input_pycuda, output_pycuda, plan[0]) | |
# strangely enough, enabling rescaling here makes it run | |
# very, very slowly. so do this rescaling manually | |
# afterwards! | |
thunk.inputs = inputs | |
thunk.outputs = outputs | |
thunk.lazy = False | |
return thunk | |
def grad(self, inputs, output_grads): | |
return [cufft(output_grads[0])] | |
def to_complex_gpuarray(x, copyif=False): | |
""" | |
adapted version of theano.misc.pycuda_utils.to_gpuarray that takes | |
an array with an extra trailing dimension of length 2 for | |
real/imaginary parts, and turns it into a complex64 PyCUDA | |
GPUArray. | |
""" | |
if not isinstance(x, CudaNdarray): | |
raise ValueError("We can transfer only CudaNdarray " | |
"to pycuda.gpuarray.GPUArray") | |
else: | |
# Check if trailing dimension has length 2 | |
assert x.shape[-1] == 2 | |
# check if dtype is float32 | |
assert x.dtype == 'float32' | |
# Check if it is c contiguous | |
size = 1 | |
c_contiguous = True | |
for i in range(x.ndim - 1, -1, -1): | |
if x.shape[i] == 1: | |
continue | |
if x._strides[i] != size: | |
c_contiguous = False | |
break | |
size *= x.shape[i] | |
if not c_contiguous: | |
if copyif: | |
x = x.copy() | |
else: | |
raise ValueError("We were asked to not copy memory, " | |
"but the memory is not c contiguous.") | |
# Now x is always c contiguous | |
px = pycuda.gpuarray.GPUArray(x.shape[:-1], np.complex64, base=x, | |
gpudata=x.gpudata) | |
return px | |
def bptrs(a): | |
""" | |
Pointer array when input represents a batch of matrices. | |
taken from scikits.cuda tests/test_cublas.py | |
""" | |
return pycuda.gpuarray.arange(a.ptr, a.ptr + a.shape[0] * a.strides[0], | |
a.strides[0], dtype=cublas.ctypes.c_void_p) | |
def sc_complex_dot_batched(bx_gpu, by_gpu, bc_gpu, transa='N', transb='N', | |
handle=None): | |
""" | |
uses cublasCgemmBatched to compute a bunch of complex dot products | |
in parallel | |
""" | |
if handle is None: | |
handle = scikits.cuda.misc._global_cublas_handle | |
assert len(bx_gpu.shape) == 3 | |
assert len(by_gpu.shape) == 3 | |
assert len(bc_gpu.shape) == 3 | |
assert bx_gpu.dtype == np.complex64 | |
assert by_gpu.dtype == np.complex64 | |
assert bc_gpu.dtype == np.complex64 | |
# Get the shapes of the arguments | |
bx_shape = bx_gpu.shape | |
by_shape = by_gpu.shape | |
# Perform matrix multiplication for 2D arrays: | |
alpha = np.complex64(1.0) | |
beta = np.complex64(0.0) | |
transa = string.lower(transa) | |
transb = string.lower(transb) | |
if transb in ['t', 'c']: | |
N, m, k = by_shape | |
elif transb in ['n']: | |
N, k, m = by_shape | |
else: | |
raise ValueError('invalid value for transb') | |
if transa in ['t', 'c']: | |
N2, l, n = bx_shape | |
elif transa in ['n']: | |
N2, n, l = bx_shape | |
else: | |
raise ValueError('invalid value for transa') | |
if l != k: | |
raise ValueError('objects are not aligned') | |
if N != N2: | |
raise ValueError('batch sizes are not the same') | |
if transb == 'n': | |
lda = max(1, m) | |
else: | |
lda = max(1, k) | |
if transa == 'n': | |
ldb = max(1, k) | |
else: | |
ldb = max(1, n) | |
ldc = max(1, m) | |
# construct pointer arrays needed for cublasCgemmBatched | |
bx_arr = bptrs(bx_gpu) | |
by_arr = bptrs(by_gpu) | |
bc_arr = bptrs(bc_gpu) | |
cublas.cublasCgemmBatched(handle, transb, transa, m, n, k, alpha, | |
by_arr.gpudata, lda, bx_arr.gpudata, ldb, | |
beta, bc_arr.gpudata, ldc, N) | |
class BatchedComplexDotOp(ScikitsCudaOp): | |
""" | |
This version uses cublasCgemmBatched under the hood, instead of | |
doing multiple cublasCgemm calls. | |
""" | |
def make_node(self, inp1, inp2): | |
inp1 = basic_ops.gpu_contiguous( | |
basic_ops.as_cuda_ndarray_variable(inp1)) | |
inp2 = basic_ops.gpu_contiguous( | |
basic_ops.as_cuda_ndarray_variable(inp2)) | |
assert inp1.dtype == "float32" | |
assert inp2.dtype == "float32" | |
assert inp1.ndim == 4 # (batch, a, b, real/imag) | |
assert inp2.ndim == 4 | |
return theano.Apply(self, [inp1, inp2], [self.output_type(inp1)()]) | |
def output_type(self, inp): | |
return CudaNdarrayType(broadcastable=[False] * inp.type.ndim) | |
def make_thunk(self, node, storage_map, _, _2): | |
super(BatchedComplexDotOp, self).make_thunk(node, storage_map, _, _2) | |
inputs = [storage_map[v] for v in node.inputs] | |
outputs = [storage_map[v] for v in node.outputs] | |
def thunk(): | |
bx = inputs[0] | |
by = inputs[1] | |
input_shape_x = bx[0].shape # (batch, a, b, 2) | |
input_shape_y = by[0].shape # (batch, b, c, 2) | |
output_shape = (input_shape_x[0], input_shape_x[1], | |
input_shape_y[2], 2) # (batch, a, c, 2) | |
bz = outputs[0] | |
# only allocate if there is no previous allocation of the | |
# right size. | |
if bz[0] is None or bz[0].shape != output_shape: | |
bz[0] = CudaNdarray.zeros(output_shape) | |
input_bx_pycuda = to_complex_gpuarray(bx[0]) | |
input_by_pycuda = to_complex_gpuarray(by[0]) | |
output_b_pycuda = to_complex_gpuarray(bz[0]) | |
# fancy native batched version | |
sc_complex_dot_batched(input_bx_pycuda, input_by_pycuda, | |
output_b_pycuda) | |
thunk.inputs = inputs | |
thunk.outputs = outputs | |
thunk.lazy = False | |
return thunk | |
curfft = CuRFFTOp() | |
cuirfft = CuIRFFTOp() | |
cufft = CuFFTOp() | |
cuifft = CuIFFTOp() | |
batched_complex_dot = BatchedComplexDotOp() | |
def mult_and_reduce(input_fft_v, filters_fft_v, input_shape=None, | |
filter_shape=None): | |
""" | |
input_fft_v is (b, ic, i0, i1//2 + 1, 2) | |
filters_fft_v is (oc, ic, i0, i1//2 + 1, 2) | |
""" | |
if input_shape is None: | |
input_shape = input_fft_v.shape # symbolic | |
if filter_shape is None: | |
filter_shape = filters_fft_v.shape # symbolic | |
b, ic, i0, i1_f, _ = input_shape | |
oc = filter_shape[0] | |
# reshape to flatten the dimensions that are multiplied elemwise | |
input_r = input_fft_v.reshape((b, ic, i0 * i1_f, 2)) | |
filters_r = filters_fft_v.reshape((oc, ic, i0 * i1_f, 2)) | |
# shuffle for batched dot product | |
input_s = input_r.dimshuffle(2, 0, 1, 3) # (i0 * i1_f, b, ic, 2) | |
filters_s = filters_r.dimshuffle(2, 1, 0, 3) # (i0 * i1_f, ic, oc, 2) | |
output_s = batched_complex_dot(input_s, filters_s) | |
# shuffle again | |
output_r = output_s.dimshuffle(1, 2, 0, 3) | |
# reshape to unflatten | |
output = output_r.reshape((b, oc, i0, i1_f, 2)) | |
return output | |
def conv2d_fft(input, filters, image_shape=None, filter_shape=None, | |
border_mode='valid', pad_last_dim=False): | |
""" | |
Perform a convolution through fft. | |
Only support input which will be even on the last dimension | |
(width). All other dimensions can be anything and the filters can | |
have an even or odd width. | |
If you must use input which has an odd width, you can either pad | |
it or use the `pad_last_dim` argument which will do it for you and | |
take care to strip the padding before returning. Don't use this | |
argument if you are not sure the input is odd since the padding is | |
unconditional and will make even input odd, thus leading to | |
problems. | |
On valid mode the filters must be smaller than the input. | |
input: (b, ic, i0, i1) | |
filters: (oc, ic, f0, f1) | |
border_mode: 'valid' of 'full' | |
pad_last_dim: Unconditionally pad the last dimension of the input | |
to to turn it from odd to even. Will strip the | |
padding before returning the result. | |
""" | |
# use symbolic shapes to compute shape info at runtime if not specified | |
if image_shape is None: | |
image_shape = input.shape | |
if filter_shape is None: | |
filter_shape = filters.shape | |
# batch size, input channels, input dim 0, input dim 1 | |
b, ic, i0, i1 = image_shape | |
# output channels, input channels, filter dim 0, filter dim 1 | |
oc, ic_, f0, f1 = filter_shape | |
# pad filters/image to output shape | |
if border_mode == 'valid': | |
o0 = i0 | |
if pad_last_dim: | |
o1 = i1 + 1 | |
input_padded = T.zeros((b, ic, o0, o1), dtype='float32') | |
input_padded = T.set_subtensor(input_padded[:, :, :i0, :i1], | |
input) | |
else: | |
o1 = i1 | |
input_padded = input | |
filters_padded = T.zeros((oc, ic, o0, o1), dtype='float32') | |
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1], | |
filters) | |
elif border_mode == 'full': | |
# In this particular case, the values of (o0, o1) represent | |
# the dimensions of the work buffer more than the actual dimensions | |
# of the desired output. | |
o0 = i0 + 2 * (f0 - 1) | |
o1 = i1 + 2 * (f1 - 1) | |
if pad_last_dim: | |
o1 = o1 + 1 | |
# We line up the filters and the images in a way | |
# such that the filters are tightly placed against the | |
# top-left of the array, and the images intersect with | |
# them on one pixel. The top-left pixel of the images | |
# is the bottom-right pixel of the filters when we | |
# do the layout here. | |
filters_padded = T.zeros((oc, ic, o0, o1), dtype='float32') | |
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1], | |
filters) | |
input_padded = T.zeros((b, ic, o0, o1), dtype='float32') | |
input_padded = T.set_subtensor(input_padded[:, :, (f0 - 1):(f0 - 1 + i0), (f1 - 1):(f1 - 1 + i1)], | |
input) | |
else: | |
raise ValueError('invalid mode') | |
input_padded = T.opt.Assert("in conv2d_fft: width is not even")( | |
input_padded, T.eq(o1 % 2, 0)) | |
# reshape for FFT | |
input_flat = input_padded.reshape((b * ic, o0, o1)) | |
filters_flat = filters_padded.reshape((oc * ic, o0, o1)) | |
# perform FFT | |
input_fft_flat = curfft(input_flat) # (b * ic, o0, o1//2 + 1, 2) | |
filters_fft_flat = curfft(filters_flat) # (oc * ic, o0, o1//2 + 1, 2) | |
# unfold ic dimension | |
input_fft_v_shape = (b, ic, o0, o1 // 2 + 1, 2) | |
filters_fft_v_shape = (oc, ic, o0, o1 // 2 + 1, 2) | |
input_fft_v = input_fft_flat.reshape(input_fft_v_shape) | |
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape) | |
# (b, oc, o0, o1//2 + 1, 2) | |
output_fft_s = mult_and_reduce(input_fft_v, filters_fft_v, | |
input_shape=input_fft_v_shape, | |
filter_shape=filters_fft_v_shape) | |
# reshape for IFFT | |
output_fft_flat = output_fft_s.reshape((b * oc, o0, o1 // 2 + 1, 2)) | |
# perform IFFT | |
output_flat = cuirfft(output_fft_flat) # (b * oc, o0, o1) | |
# reshape | |
output_circ = output_flat.reshape((b, oc, o0, o1)) # circular! | |
# Now we extract the region of interest. | |
# We just cut it out from the output_circ | |
# array that was used for the computation. | |
# We do not need to handle pad_last_dim in a | |
# special way because we specify explicitly here | |
# how much values are expected. | |
if border_mode == 'valid': | |
output = output_circ[:, :, (f0-1):(f0-1 + i0-f0+1), (f1-1):(f1-1 + i1-f1+1)] | |
elif border_mode == 'full': | |
output = output_circ[:, :, (f0-1):(f0-1 + i0+f0-1), (f1-1):(f1-1 + i1+f1-1)] | |
else: | |
raise ValueError('invalid mode') | |
# Rescale manually. This is just a factor that comes in during the | |
# trip through FFT and inverse FFT. | |
output = (1.0 / T.cast(o0 * o1, 'float32')) * output | |
# output should now be the result of a batched valid convolution | |
# of the input with the filters. | |
return basic_ops.as_cuda_ndarray_variable(output) | |
def conv3d_fft(input, filters, image_shape=None, filter_shape=None, | |
border_mode='valid', pad_last_dim=False): | |
""" | |
Perform a convolution through fft. | |
Only supports input whose shape is even on the last dimension. | |
All other dimensions can be anything and the filters can | |
have an even or odd last dimension. | |
The semantics associated with the last three dimensions | |
are not important as long as they are in the same order between | |
the inputs and the filters. For example, when the convolution | |
is done on a sequence of images, they could be either | |
(duration, height, width) or (height, width, duration). | |
If you must use input which has an odd width, you can either pad | |
it or use the `pad_last_dim` argument which will do it for you and | |
take care to strip the padding before returning. pad_last_dim checks | |
that the last dimension is odd before the actual paddding | |
On valid mode the filters must be smaller than the input. | |
input: (b, ic, i0, i1, i2) | |
filters: (oc, ic, f0, f1, i2) | |
border_mode: 'valid' of 'full' | |
pad_last_dim: Unconditionally pad the last dimension of the input | |
to to turn it from odd to even. Will strip the | |
padding before returning the result. | |
""" | |
# use symbolic shapes to compute shape info at runtime if not specified | |
if image_shape is None: | |
image_shape = input.shape | |
if filter_shape is None: | |
filter_shape = filters.shape | |
# batch size, input channels, input dim 0, input dim 1 | |
b, ic, i0, i1, i2 = image_shape | |
# output channels, input channels, filter dim 0, filter dim 1 | |
oc, ic_, f0, f1, f2 = filter_shape | |
# Check that the last dimension is odd | |
is_odd = T.eq(T.mod(input.shape[4], 2), 1) | |
# pad filters/image to output shape | |
if border_mode == 'valid': | |
o0 = i0 | |
o1 = i1 | |
o2 = i2 | |
input_padded = input | |
if pad_last_dim: | |
o2 = ifelse(is_odd, o2 + 1, o2) | |
input_padded = T.zeros((b, ic, o0, o1, o2), dtype='float32') | |
input_padded = T.set_subtensor(input_padded[:, :, :i0, :i1, :i2], | |
input) | |
filters_padded = T.zeros((oc, ic, o0, o1, o2), dtype='float32') | |
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1, :f2], | |
filters) | |
elif border_mode == 'full': | |
# In this particular case, the values of (o0, o1) represent | |
# the dimensions of the work buffer more than the actual dimensions | |
# of the desired output. | |
o0 = i0 + 2 * (f0 - 1) | |
o1 = i1 + 2 * (f1 - 1) | |
o2 = i2 + 2 * (f2 - 1) | |
if pad_last_dim: | |
o2 = ifelse(is_odd, o2 + 1, o2) | |
# We line up the filters and the images in a way | |
# such that the filters are tightly placed against the | |
# top-left of the array, and the images intersect with | |
# them on one pixel. The top-left pixel of the images | |
# is the bottom-right pixel of the filters when we | |
# do the layout here. | |
filters_padded = T.zeros((oc, ic, o0, o1, o2), dtype='float32') | |
filters_padded = T.set_subtensor(filters_padded[:, :, :f0, :f1, :f2], | |
filters) | |
input_padded = T.zeros((b, ic, o0, o1, o2), dtype='float32') | |
input_padded = T.set_subtensor(input_padded[:, :, (f0 - 1):(f0 - 1 + i0), (f1 - 1):(f1 - 1 + i1), (f2 - 1):(f2 - 1 + i2)], | |
input) | |
else: | |
raise ValueError('invalid mode') | |
# reshape for FFT | |
input_flat = input_padded.reshape((b * ic, o0, o1, o2)) | |
filters_flat = filters_padded.reshape((oc * ic, o0, o1, o2)) | |
# perform FFT | |
input_fft_flat = curfft(input_flat) # (b * ic, o0, o1, o2//2 + 1, 2) | |
filters_fft_flat = curfft(filters_flat) # (oc * ic, o0, o1, o2//2 + 1, 2) | |
# Unfold ic dimension. | |
# We have to collapse two dimensions together | |
# in order to reuse the same `mult_and_reduce`. | |
# This explains the o0 * 01 instead of just keeping | |
# the two dimensions intact. | |
input_fft_v_shape = (b, ic, o0 * o1, o2 // 2 + 1, 2) | |
filters_fft_v_shape = (oc, ic, o0 * o1, o2 // 2 + 1, 2) | |
input_fft_v = input_fft_flat.reshape(input_fft_v_shape) | |
filters_fft_v = filters_fft_flat.reshape(filters_fft_v_shape) | |
# (b, oc, o0 * o1, o2//2 + 1, 2) | |
output_fft_s = mult_and_reduce(input_fft_v, filters_fft_v, | |
input_shape=input_fft_v_shape, | |
filter_shape=filters_fft_v_shape) | |
#output_fft_s = input_fft_v | |
# reshape for IFFT | |
output_fft_flat = output_fft_s.reshape((b * oc, o0, o1, o2 // 2 + 1, 2)) | |
# perform IFFT | |
output_flat = cuirfft(output_fft_flat) # (b * oc, o0, o1, o2) | |
# reshape | |
output_circ = output_flat.reshape((b, oc, o0, o1, o2)) # circular! | |
# Now we extract the region of interest. | |
# We just cut it out from the output_circ | |
# array that was used for the computation. | |
# We do not need to handle pad_last_dim in a | |
# special way because we specify explicitly here | |
# how much values are expected. | |
if border_mode == 'valid': | |
output = output_circ[:, :, (f0-1):(f0-1 + i0-f0+1), (f1-1):(f1-1 + i1-f1+1), (f2-1):(f2-1 + i2-f2+1)] | |
elif border_mode == 'full': | |
output = output_circ[:, :, (f0-1):(f0-1 + i0+f0-1), (f1-1):(f1-1 + i1+f1-1), (f2-1):(f2-1 + i2+f2-1)] | |
else: | |
raise ValueError('invalid mode') | |
#output = output_circ[:, :, :, :, :] | |
# Rescale manually. This is just a factor that comes in during the | |
# trip through FFT and inverse FFT. | |
output = (1.0 / T.cast(o0 * o1 * o2, 'float32')) * output | |
# output should now be the result of a batched valid convolution | |
# of the input with the filters. | |
return basic_ops.as_cuda_ndarray_variable(output) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment