-
-
Save trungnt13/4fc68a81526d0e898c5c to your computer and use it in GitHub Desktop.
Simple Generative Adversarial Network Demo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import numpy as np | |
from matplotlib import pyplot as plt | |
from time import time | |
from foxhound import activations | |
from foxhound import updates | |
from foxhound import inits | |
from foxhound.theano_utils import floatX, sharedX | |
import theano | |
import theano.tensor as T | |
from scipy.stats import gaussian_kde | |
from scipy.misc import imsave, imread | |
leakyrectify = activations.LeakyRectify() | |
rectify = activations.Rectify() | |
tanh = activations.Tanh() | |
sigmoid = activations.Sigmoid() | |
bce = T.nnet.binary_crossentropy | |
batch_size = 128 | |
nh = 2048 | |
init_fn = inits.Normal(scale=0.02) | |
def gaussian_likelihood(X, u=0., s=1.): | |
return (1./(s*np.sqrt(2*np.pi)))*np.exp(-(((X - u)**2)/(2*s**2))) | |
def scale_and_shift(X, g, b, e=1e-8): | |
X = X*g + b | |
return X | |
def g(X, w, g, b, w2, g2, b2, wo): | |
h = leakyrectify(scale_and_shift(T.dot(X, w), g, b)) | |
h2 = leakyrectify(scale_and_shift(T.dot(h, w2), g2, b2)) | |
y = T.dot(h2, wo) | |
return y | |
def d(X, w, g, b, w2, g2, b2, wo): | |
h = rectify(scale_and_shift(T.dot(X, w), g, b)) | |
h2 = tanh(scale_and_shift(T.dot(h, w2), g2, b2)) | |
y = sigmoid(T.dot(h2, wo)) | |
return y | |
gw = init_fn((1, nh)) | |
gg = inits.Constant(1.)(nh) | |
gg = inits.Normal(1., 0.02)(nh) | |
gb = inits.Normal(0., 0.02)(nh) | |
gw2 = init_fn((nh, nh)) | |
gg2 = inits.Normal(1., 0.02)(nh) | |
gb2 = inits.Normal(0., 0.02)(nh) | |
gy = init_fn((nh, 1)) | |
ggy = inits.Constant(1.)(1) | |
gby = inits.Normal(0., 0.02)(1) | |
dw = init_fn((1, nh)) | |
dg = inits.Normal(1., 0.02)(nh) | |
db = inits.Normal(0., 0.02)(nh) | |
dw2 = init_fn((nh, nh)) | |
dg2 = inits.Normal(1., 0.02)(nh) | |
db2 = inits.Normal(0., 0.02)(nh) | |
dy = init_fn((nh, 1)) | |
dgy = inits.Normal(1., 0.02)(1) | |
dby = inits.Normal(0., 0.02)(1) | |
g_params = [gw, gg, gb, gw2, gg2, gb2, gy] | |
d_params = [dw, dg, db, dw2, dg2, db2, dy] | |
Z = T.matrix() | |
X = T.matrix() | |
gen = g(Z, *g_params) | |
p_real = d(X, *d_params) | |
p_gen = d(gen, *d_params) | |
d_cost_real = bce(p_real, T.ones(p_real.shape)).mean() | |
d_cost_gen = bce(p_gen, T.zeros(p_gen.shape)).mean() | |
g_cost_d = bce(p_gen, T.ones(p_gen.shape)).mean() | |
d_cost = d_cost_real + d_cost_gen | |
g_cost = g_cost_d | |
cost = [g_cost, d_cost, d_cost_real, d_cost_gen] | |
lr = 0.001 | |
lrt = sharedX(lr) | |
d_updater = updates.Adam(lr=lrt) | |
g_updater = updates.Adam(lr=lrt) | |
d_updates = d_updater(d_params, d_cost) | |
g_updates = g_updater(g_params, g_cost) | |
updates = d_updates + g_updates | |
_train_g = theano.function([X, Z], cost, updates=g_updates) | |
_train_d = theano.function([X, Z], cost, updates=d_updates) | |
_train_both = theano.function([X, Z], cost, updates=updates) | |
_gen = theano.function([Z], gen) | |
_score = theano.function([X], p_real) | |
_cost = theano.function([X, Z], cost) | |
fig = plt.figure() | |
def vis(i): | |
s = 1. | |
u = 0. | |
zs = np.linspace(-1, 1, 500).astype('float32') | |
xs = np.linspace(-5, 5, 500).astype('float32') | |
ps = gaussian_likelihood(xs, 1.) | |
gs = _gen(zs.reshape(-1, 1)).flatten() | |
preal = _score(xs.reshape(-1, 1)).flatten() | |
kde = gaussian_kde(gs) | |
plt.clf() | |
plt.plot(xs, ps, '--', lw=2) | |
plt.plot(xs, kde(xs), lw=2) | |
plt.plot(xs, preal, lw=2) | |
plt.xlim([-5., 5.]) | |
plt.ylim([0., 1.]) | |
plt.ylabel('Prob') | |
plt.xlabel('x') | |
plt.legend(['P(data)', 'G(z)', 'D(x)']) | |
plt.title('GAN learning guassian') | |
fig.canvas.draw() | |
plt.show(block=False) | |
for i in range(10000): | |
zmb = np.random.uniform(-1, 1, size=(batch_size, 1)).astype('float32') | |
xmb = np.random.normal(1., 1, size=(batch_size, 1)).astype('float32') | |
if i % 10 == 0: | |
_train_g(xmb, zmb) | |
else: | |
_train_d(xmb, zmb) | |
if i % 10 == 0: | |
print i | |
vis(i) | |
lrt.set_value(floatX(lrt.get_value()*0.9999)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment