Skip to content

Instantly share code, notes, and snippets.

@tilfin
Created January 6, 2017 16:07
Show Gist options
  • Save tilfin/91f607c87b5e566cca1e78c39d56575d to your computer and use it in GitHub Desktop.
Save tilfin/91f607c87b5e566cca1e78c39d56575d to your computer and use it in GitHub Desktop.
from datetime import datetime
import math
import time
import numpy as np
import tensorflow as tf
from tensorflow.models.image.cifar10 import cifar10
FLAGS = tf.app.flags.FLAGS
#cifar10.IMAGE_SIZE = 32
tf.app.flags.DEFINE_string('checkpoint_dir', 'D:/tensorflow/data/cifar10_train',
"""Directory where to read model checkpoints.""")
tf.app.flags.DEFINE_integer('num_examples', 10000,
"""Number of examples to run.""")
def evaluate_images(images):
logits = cifar10.inference(images)
variable_averages = tf.train.ExponentialMovingAverage(
cifar10.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore)
load_trained_model(saver, logits)
def load_trained_model(saver, logits):
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(FLAGS.checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
# Restores from checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
else:
print('No checkpoint file found')
return
predict = sess.run(logits)
print(predict, '\n')
def img_read(filename):
if not tf.gfile.Exists(filename):
tf.logging.fatal('File does not exists %s', filename)
image_data = tf.gfile.FastGFile(filename, 'rb').read()
image = tf.image.decode_jpeg(image_data)
image = tf.image.resize_images(image, [24, 24])
return image
filename = '1.jpg'
image = img_read(filename)
evaluate_images([image])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment