-
Star
(127)
You must be signed in to star a gist -
Fork
(52)
You must be signed in to fork a gist
-
-
Save teamdandelion/4f02ab8f1451e276fea1f165a20336f1 to your computer and use it in GitHub Desktop.
| 7 | |
| 2 | |
| 1 | |
| 0 | |
| 4 | |
| 1 | |
| 4 | |
| 9 | |
| 5 | |
| 9 | |
| 0 | |
| 6 | |
| 9 | |
| 0 | |
| 1 | |
| 5 | |
| 9 | |
| 7 | |
| 3 | |
| 4 | |
| 9 | |
| 6 | |
| 6 | |
| 5 | |
| 4 | |
| 0 | |
| 7 | |
| 4 | |
| 0 | |
| 1 | |
| 3 | |
| 1 | |
| 3 | |
| 4 | |
| 7 | |
| 2 | |
| 7 | |
| 1 | |
| 2 | |
| 1 | |
| 1 | |
| 7 | |
| 4 | |
| 2 | |
| 3 | |
| 5 | |
| 1 | |
| 2 | |
| 4 | |
| 4 | |
| 6 | |
| 3 | |
| 5 | |
| 5 | |
| 6 | |
| 0 | |
| 4 | |
| 1 | |
| 9 | |
| 5 | |
| 7 | |
| 8 | |
| 9 | |
| 3 | |
| 7 | |
| 4 | |
| 6 | |
| 4 | |
| 3 | |
| 0 | |
| 7 | |
| 0 | |
| 2 | |
| 9 | |
| 1 | |
| 7 | |
| 3 | |
| 2 | |
| 9 | |
| 7 | |
| 7 | |
| 6 | |
| 2 | |
| 7 | |
| 8 | |
| 4 | |
| 7 | |
| 3 | |
| 6 | |
| 1 | |
| 3 | |
| 6 | |
| 9 | |
| 3 | |
| 1 | |
| 4 | |
| 1 | |
| 7 | |
| 6 | |
| 9 | |
| 6 | |
| 0 | |
| 5 | |
| 4 | |
| 9 | |
| 9 | |
| 2 | |
| 1 | |
| 9 | |
| 4 | |
| 8 | |
| 7 | |
| 3 | |
| 9 | |
| 7 | |
| 4 | |
| 4 | |
| 4 | |
| 9 | |
| 2 | |
| 5 | |
| 4 | |
| 7 | |
| 6 | |
| 7 | |
| 9 | |
| 0 | |
| 5 | |
| 8 | |
| 5 | |
| 6 | |
| 6 | |
| 5 | |
| 7 | |
| 8 | |
| 1 | |
| 0 | |
| 1 | |
| 6 | |
| 4 | |
| 6 | |
| 7 | |
| 3 | |
| 1 | |
| 7 | |
| 1 | |
| 8 | |
| 2 | |
| 0 | |
| 2 | |
| 9 | |
| 9 | |
| 5 | |
| 5 | |
| 1 | |
| 5 | |
| 6 | |
| 0 | |
| 3 | |
| 4 | |
| 4 | |
| 6 | |
| 5 | |
| 4 | |
| 6 | |
| 5 | |
| 4 | |
| 5 | |
| 1 | |
| 4 | |
| 4 | |
| 7 | |
| 2 | |
| 3 | |
| 2 | |
| 7 | |
| 1 | |
| 8 | |
| 1 | |
| 8 | |
| 1 | |
| 8 | |
| 5 | |
| 0 | |
| 8 | |
| 9 | |
| 2 | |
| 5 | |
| 0 | |
| 1 | |
| 1 | |
| 1 | |
| 0 | |
| 9 | |
| 0 | |
| 3 | |
| 1 | |
| 6 | |
| 4 | |
| 2 | |
| 3 | |
| 6 | |
| 1 | |
| 1 | |
| 1 | |
| 3 | |
| 9 | |
| 5 | |
| 2 | |
| 9 | |
| 4 | |
| 5 | |
| 9 | |
| 3 | |
| 9 | |
| 0 | |
| 3 | |
| 6 | |
| 5 | |
| 5 | |
| 7 | |
| 2 | |
| 2 | |
| 7 | |
| 1 | |
| 2 | |
| 8 | |
| 4 | |
| 1 | |
| 7 | |
| 3 | |
| 3 | |
| 8 | |
| 8 | |
| 7 | |
| 9 | |
| 2 | |
| 2 | |
| 4 | |
| 1 | |
| 5 | |
| 9 | |
| 8 | |
| 7 | |
| 2 | |
| 3 | |
| 0 | |
| 4 | |
| 4 | |
| 2 | |
| 4 | |
| 1 | |
| 9 | |
| 5 | |
| 7 | |
| 7 | |
| 2 | |
| 8 | |
| 2 | |
| 6 | |
| 8 | |
| 5 | |
| 7 | |
| 7 | |
| 9 | |
| 1 | |
| 8 | |
| 1 | |
| 8 | |
| 0 | |
| 3 | |
| 0 | |
| 1 | |
| 9 | |
| 9 | |
| 4 | |
| 1 | |
| 8 | |
| 2 | |
| 1 | |
| 2 | |
| 9 | |
| 7 | |
| 5 | |
| 9 | |
| 2 | |
| 6 | |
| 4 | |
| 1 | |
| 5 | |
| 8 | |
| 2 | |
| 9 | |
| 2 | |
| 0 | |
| 4 | |
| 0 | |
| 0 | |
| 2 | |
| 8 | |
| 4 | |
| 7 | |
| 1 | |
| 2 | |
| 4 | |
| 0 | |
| 2 | |
| 7 | |
| 4 | |
| 3 | |
| 3 | |
| 0 | |
| 0 | |
| 3 | |
| 1 | |
| 9 | |
| 6 | |
| 5 | |
| 2 | |
| 5 | |
| 9 | |
| 2 | |
| 9 | |
| 3 | |
| 0 | |
| 4 | |
| 2 | |
| 0 | |
| 7 | |
| 1 | |
| 1 | |
| 2 | |
| 1 | |
| 5 | |
| 3 | |
| 3 | |
| 9 | |
| 7 | |
| 8 | |
| 6 | |
| 5 | |
| 6 | |
| 1 | |
| 3 | |
| 8 | |
| 1 | |
| 0 | |
| 5 | |
| 1 | |
| 3 | |
| 1 | |
| 5 | |
| 5 | |
| 6 | |
| 1 | |
| 8 | |
| 5 | |
| 1 | |
| 7 | |
| 9 | |
| 4 | |
| 6 | |
| 2 | |
| 2 | |
| 5 | |
| 0 | |
| 6 | |
| 5 | |
| 6 | |
| 3 | |
| 7 | |
| 2 | |
| 0 | |
| 8 | |
| 8 | |
| 5 | |
| 4 | |
| 1 | |
| 1 | |
| 4 | |
| 0 | |
| 3 | |
| 3 | |
| 7 | |
| 6 | |
| 1 | |
| 6 | |
| 2 | |
| 1 | |
| 9 | |
| 2 | |
| 8 | |
| 6 | |
| 1 | |
| 9 | |
| 5 | |
| 2 | |
| 5 | |
| 4 | |
| 4 | |
| 2 | |
| 8 | |
| 3 | |
| 8 | |
| 2 | |
| 4 | |
| 5 | |
| 0 | |
| 3 | |
| 1 | |
| 7 | |
| 7 | |
| 5 | |
| 7 | |
| 9 | |
| 7 | |
| 1 | |
| 9 | |
| 2 | |
| 1 | |
| 4 | |
| 2 | |
| 9 | |
| 2 | |
| 0 | |
| 4 | |
| 9 | |
| 1 | |
| 4 | |
| 8 | |
| 1 | |
| 8 | |
| 4 | |
| 5 | |
| 9 | |
| 8 | |
| 8 | |
| 3 | |
| 7 | |
| 6 | |
| 0 | |
| 0 | |
| 3 | |
| 0 | |
| 2 | |
| 6 | |
| 6 | |
| 4 | |
| 9 | |
| 3 | |
| 3 | |
| 3 | |
| 2 | |
| 3 | |
| 9 | |
| 1 | |
| 2 | |
| 6 | |
| 8 | |
| 0 | |
| 5 | |
| 6 | |
| 6 | |
| 6 | |
| 3 | |
| 8 | |
| 8 | |
| 2 | |
| 7 | |
| 5 | |
| 8 | |
| 9 | |
| 6 | |
| 1 | |
| 8 | |
| 4 | |
| 1 | |
| 2 | |
| 5 | |
| 9 | |
| 1 | |
| 9 | |
| 7 | |
| 5 | |
| 4 | |
| 0 | |
| 8 | |
| 9 | |
| 9 | |
| 1 | |
| 0 | |
| 5 | |
| 2 | |
| 3 | |
| 7 | |
| 8 | |
| 9 | |
| 4 | |
| 0 | |
| 6 | |
| 3 | |
| 9 | |
| 5 | |
| 2 | |
| 1 | |
| 3 | |
| 1 | |
| 3 | |
| 6 | |
| 5 | |
| 7 | |
| 4 | |
| 2 | |
| 2 | |
| 6 | |
| 3 | |
| 2 | |
| 6 | |
| 5 | |
| 4 | |
| 8 | |
| 9 | |
| 7 | |
| 1 | |
| 3 | |
| 0 | |
| 3 | |
| 8 | |
| 3 | |
| 1 | |
| 9 | |
| 3 | |
| 4 | |
| 4 | |
| 6 | |
| 4 | |
| 2 | |
| 1 | |
| 8 | |
| 2 | |
| 5 | |
| 4 | |
| 8 | |
| 8 | |
| 4 | |
| 0 | |
| 0 | |
| 2 | |
| 3 | |
| 2 | |
| 7 | |
| 7 | |
| 0 | |
| 8 | |
| 7 | |
| 4 | |
| 4 | |
| 7 | |
| 9 | |
| 6 | |
| 9 | |
| 0 | |
| 9 | |
| 8 | |
| 0 | |
| 4 | |
| 6 | |
| 0 | |
| 6 | |
| 3 | |
| 5 | |
| 4 | |
| 8 | |
| 3 | |
| 3 | |
| 9 | |
| 3 | |
| 3 | |
| 3 | |
| 7 | |
| 8 | |
| 0 | |
| 8 | |
| 2 | |
| 1 | |
| 7 | |
| 0 | |
| 6 | |
| 5 | |
| 4 | |
| 3 | |
| 8 | |
| 0 | |
| 9 | |
| 6 | |
| 3 | |
| 8 | |
| 0 | |
| 9 | |
| 9 | |
| 6 | |
| 8 | |
| 6 | |
| 8 | |
| 5 | |
| 7 | |
| 8 | |
| 6 | |
| 0 | |
| 2 | |
| 4 | |
| 0 | |
| 2 | |
| 2 | |
| 3 | |
| 1 | |
| 9 | |
| 7 | |
| 5 | |
| 1 | |
| 0 | |
| 8 | |
| 4 | |
| 6 | |
| 2 | |
| 6 | |
| 7 | |
| 9 | |
| 3 | |
| 2 | |
| 9 | |
| 8 | |
| 2 | |
| 2 | |
| 9 | |
| 2 | |
| 7 | |
| 3 | |
| 5 | |
| 9 | |
| 1 | |
| 8 | |
| 0 | |
| 2 | |
| 0 | |
| 5 | |
| 2 | |
| 1 | |
| 3 | |
| 7 | |
| 6 | |
| 7 | |
| 1 | |
| 2 | |
| 5 | |
| 8 | |
| 0 | |
| 3 | |
| 7 | |
| 2 | |
| 4 | |
| 0 | |
| 9 | |
| 1 | |
| 8 | |
| 6 | |
| 7 | |
| 7 | |
| 4 | |
| 3 | |
| 4 | |
| 9 | |
| 1 | |
| 9 | |
| 5 | |
| 1 | |
| 7 | |
| 3 | |
| 9 | |
| 7 | |
| 6 | |
| 9 | |
| 1 | |
| 3 | |
| 7 | |
| 8 | |
| 3 | |
| 3 | |
| 6 | |
| 7 | |
| 2 | |
| 8 | |
| 5 | |
| 8 | |
| 5 | |
| 1 | |
| 1 | |
| 4 | |
| 4 | |
| 3 | |
| 1 | |
| 0 | |
| 7 | |
| 7 | |
| 0 | |
| 7 | |
| 9 | |
| 4 | |
| 4 | |
| 8 | |
| 5 | |
| 5 | |
| 4 | |
| 0 | |
| 8 | |
| 2 | |
| 1 | |
| 0 | |
| 8 | |
| 4 | |
| 5 | |
| 0 | |
| 4 | |
| 0 | |
| 6 | |
| 1 | |
| 7 | |
| 3 | |
| 2 | |
| 6 | |
| 7 | |
| 2 | |
| 6 | |
| 9 | |
| 3 | |
| 1 | |
| 4 | |
| 6 | |
| 2 | |
| 5 | |
| 4 | |
| 2 | |
| 0 | |
| 6 | |
| 2 | |
| 1 | |
| 7 | |
| 3 | |
| 4 | |
| 1 | |
| 0 | |
| 5 | |
| 4 | |
| 3 | |
| 1 | |
| 1 | |
| 7 | |
| 4 | |
| 9 | |
| 9 | |
| 4 | |
| 8 | |
| 4 | |
| 0 | |
| 2 | |
| 4 | |
| 5 | |
| 1 | |
| 1 | |
| 6 | |
| 4 | |
| 7 | |
| 1 | |
| 9 | |
| 4 | |
| 2 | |
| 4 | |
| 1 | |
| 5 | |
| 5 | |
| 3 | |
| 8 | |
| 3 | |
| 1 | |
| 4 | |
| 5 | |
| 6 | |
| 8 | |
| 9 | |
| 4 | |
| 1 | |
| 5 | |
| 3 | |
| 8 | |
| 0 | |
| 3 | |
| 2 | |
| 5 | |
| 1 | |
| 2 | |
| 8 | |
| 3 | |
| 4 | |
| 4 | |
| 0 | |
| 8 | |
| 8 | |
| 3 | |
| 3 | |
| 1 | |
| 7 | |
| 3 | |
| 5 | |
| 9 | |
| 6 | |
| 3 | |
| 2 | |
| 6 | |
| 1 | |
| 3 | |
| 6 | |
| 0 | |
| 7 | |
| 2 | |
| 1 | |
| 7 | |
| 1 | |
| 4 | |
| 2 | |
| 4 | |
| 2 | |
| 1 | |
| 7 | |
| 9 | |
| 6 | |
| 1 | |
| 1 | |
| 2 | |
| 4 | |
| 8 | |
| 1 | |
| 7 | |
| 7 | |
| 4 | |
| 8 | |
| 0 | |
| 7 | |
| 3 | |
| 1 | |
| 3 | |
| 1 | |
| 0 | |
| 7 | |
| 7 | |
| 0 | |
| 3 | |
| 5 | |
| 5 | |
| 2 | |
| 7 | |
| 6 | |
| 6 | |
| 9 | |
| 2 | |
| 8 | |
| 3 | |
| 5 | |
| 2 | |
| 2 | |
| 5 | |
| 6 | |
| 0 | |
| 8 | |
| 2 | |
| 9 | |
| 2 | |
| 8 | |
| 8 | |
| 8 | |
| 8 | |
| 7 | |
| 4 | |
| 9 | |
| 3 | |
| 0 | |
| 6 | |
| 6 | |
| 3 | |
| 2 | |
| 1 | |
| 3 | |
| 2 | |
| 2 | |
| 9 | |
| 3 | |
| 0 | |
| 0 | |
| 5 | |
| 7 | |
| 8 | |
| 1 | |
| 4 | |
| 4 | |
| 6 | |
| 0 | |
| 2 | |
| 9 | |
| 1 | |
| 4 | |
| 7 | |
| 4 | |
| 7 | |
| 3 | |
| 9 | |
| 8 | |
| 8 | |
| 4 | |
| 7 | |
| 1 | |
| 2 | |
| 1 | |
| 2 | |
| 2 | |
| 3 | |
| 2 | |
| 3 | |
| 2 | |
| 3 | |
| 9 | |
| 1 | |
| 7 | |
| 4 | |
| 0 | |
| 3 | |
| 5 | |
| 5 | |
| 8 | |
| 6 | |
| 3 | |
| 2 | |
| 6 | |
| 7 | |
| 6 | |
| 6 | |
| 3 | |
| 2 | |
| 7 | |
| 8 | |
| 1 | |
| 1 | |
| 7 | |
| 5 | |
| 6 | |
| 4 | |
| 9 | |
| 5 | |
| 1 | |
| 3 | |
| 3 | |
| 4 | |
| 7 | |
| 8 | |
| 9 | |
| 1 | |
| 1 | |
| 6 | |
| 9 | |
| 1 | |
| 4 | |
| 4 | |
| 5 | |
| 4 | |
| 0 | |
| 6 | |
| 2 | |
| 2 | |
| 3 | |
| 1 | |
| 5 | |
| 1 | |
| 2 | |
| 0 | |
| 3 | |
| 8 | |
| 1 | |
| 2 | |
| 6 | |
| 7 | |
| 1 | |
| 6 | |
| 2 | |
| 3 | |
| 9 | |
| 0 | |
| 1 | |
| 2 | |
| 2 | |
| 0 | |
| 8 | |
| 9 | |
| 9 | |
| 0 | |
| 2 | |
| 5 | |
| 1 | |
| 9 | |
| 7 | |
| 8 | |
| 1 | |
| 0 | |
| 4 | |
| 1 | |
| 7 | |
| 9 | |
| 6 | |
| 4 | |
| 2 | |
| 6 | |
| 8 | |
| 1 | |
| 3 | |
| 7 | |
| 5 | |
| 4 |
| # Copyright 2017 Google, Inc. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| import os | |
| import tensorflow as tf | |
| import urllib | |
| LOGDIR = '/tmp/mnist_tutorial/' | |
| GIST_URL = 'https://gist.githubusercontent.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180' | |
| ### MNIST EMBEDDINGS ### | |
| mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True) | |
| ### Get a sprite and labels file for the embedding projector ### | |
| urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv') | |
| urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png') | |
| def conv_layer(input, size_in, size_out, name="conv"): | |
| with tf.name_scope(name): | |
| w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W") | |
| b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
| conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME") | |
| act = tf.nn.relu(conv + b) | |
| tf.summary.histogram("weights", w) | |
| tf.summary.histogram("biases", b) | |
| tf.summary.histogram("activations", act) | |
| return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
| def fc_layer(input, size_in, size_out, name="fc"): | |
| with tf.name_scope(name): | |
| w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W") | |
| b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
| act = tf.nn.relu(tf.matmul(input, w) + b) | |
| tf.summary.histogram("weights", w) | |
| tf.summary.histogram("biases", b) | |
| tf.summary.histogram("activations", act) | |
| return act | |
| def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam): | |
| tf.reset_default_graph() | |
| sess = tf.Session() | |
| # Setup placeholders, and reshape the data | |
| x = tf.placeholder(tf.float32, shape=[None, 784], name="x") | |
| x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
| tf.summary.image('input', x_image, 3) | |
| y = tf.placeholder(tf.float32, shape=[None, 10], name="labels") | |
| if use_two_conv: | |
| conv1 = conv_layer(x_image, 1, 32, "conv1") | |
| conv_out = conv_layer(conv1, 32, 64, "conv2") | |
| else: | |
| conv1 = conv_layer(x_image, 1, 64, "conv") | |
| conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
| flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64]) | |
| if use_two_fc: | |
| fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1") | |
| embedding_input = fc1 | |
| embedding_size = 1024 | |
| logits = fc_layer(fc1, 1024, 10, "fc2") | |
| else: | |
| embedding_input = flattened | |
| embedding_size = 7*7*64 | |
| logits = fc_layer(flattened, 7*7*64, 10, "fc") | |
| with tf.name_scope("xent"): | |
| xent = tf.reduce_mean( | |
| tf.nn.softmax_cross_entropy_with_logits( | |
| logits=logits, labels=y), name="xent") | |
| tf.summary.scalar("xent", xent) | |
| with tf.name_scope("train"): | |
| train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent) | |
| with tf.name_scope("accuracy"): | |
| correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) | |
| accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
| tf.summary.scalar("accuracy", accuracy) | |
| summ = tf.summary.merge_all() | |
| embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding") | |
| assignment = embedding.assign(embedding_input) | |
| saver = tf.train.Saver() | |
| sess.run(tf.global_variables_initializer()) | |
| writer = tf.summary.FileWriter(LOGDIR + hparam) | |
| writer.add_graph(sess.graph) | |
| config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig() | |
| embedding_config = config.embeddings.add() | |
| embedding_config.tensor_name = embedding.name | |
| embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png' | |
| embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv' | |
| # Specify the width and height of a single thumbnail. | |
| embedding_config.sprite.single_image_dim.extend([28, 28]) | |
| tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config) | |
| for i in range(2001): | |
| batch = mnist.train.next_batch(100) | |
| if i % 5 == 0: | |
| [train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]}) | |
| writer.add_summary(s, i) | |
| if i % 500 == 0: | |
| sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]}) | |
| saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i) | |
| sess.run(train_step, feed_dict={x: batch[0], y: batch[1]}) | |
| def make_hparam_string(learning_rate, use_two_fc, use_two_conv): | |
| conv_param = "conv=2" if use_two_conv else "conv=1" | |
| fc_param = "fc=2" if use_two_fc else "fc=1" | |
| return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param) | |
| def main(): | |
| # You can try adding some more learning rates | |
| for learning_rate in [1E-4]: | |
| # Include "False" as a value to try different model architectures | |
| for use_two_fc in [True]: | |
| for use_two_conv in [True]: | |
| # Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2) | |
| hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv) | |
| print('Starting run for %s' % hparam) | |
| # Actually run with the new settings | |
| mnist_model(learning_rate, use_two_fc, use_two_conv, hparam) | |
| if __name__ == '__main__': | |
| main() |
This is an amazing TensorBoard example! Love it!
Beautiful relatable example for humans to comprehend the power of tensorboard. Switching to my own data use cases will be cool.
@shekhovt Yes, the same problem to me. At this time, one dropout layer between two fully-connected neural network would make results better. Have a try.
embedding visualisation is not working for me. I can see both label and sprite image files, but tensorboard is unable to load them, it just says loading forever... I have downloaded the files from https://github.com/dandelionmane/tf-dev-summit-tensorboard-tutorial
labels file does not have a header in the first line, it simply has label(digit) in each row. Could that be a problem?
I am able to see all other graphs without any issue... Any help appreciated
Hi,
With this version of code I am getting very poor training results, not at all like in the video,

I have no idea why. It is in the default settings 2 conv, 2 fc, learning rate 1e-4 Adam. Different runs may land in very different training accuracy but more often a poor accuracy and never close to 1.
Ok, after reading the other comments, the problem is clear:
it is the ReLu + softmax activation on the output. The moved tutorial repository does not have this problem. Maybe you should take this one down.