Created
July 19, 2018 16:35
-
-
Save tanzhenyu/48d705ba49acb0ff166da2db986745ef to your computer and use it in GitHub Desktop.
nasnet model for model_to_estimator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Download your data here: https://www.kaggle.com/c/dogs-vs-cats/data and split them into /train/dogs & /train/cats | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img | |
from keras.models import Sequential | |
from keras.layers import Conv2D, MaxPooling2D | |
from keras.layers import Activation, Dropout, Flatten, Dense | |
import tensorflow as tf | |
def test_nasnet(self): | |
img_width, img_height = 150, 150 | |
train_samples = 1600 | |
train_data_dir = '/train' | |
epochs = 50 | |
batch_size = 16 | |
steps = int(train_samples / batch_size) | |
input_shape = (img_width, img_height, 3) | |
train_datagen = ImageDataGenerator( | |
rescale=1. / 255, | |
shear_range=0.2, | |
zoom_range=0.2, | |
horizontal_flip=True) | |
train_generator = train_datagen.flow_from_directory( | |
train_data_dir, | |
target_size=(img_width, img_height), | |
batch_size=batch_size, | |
class_mode='binary') | |
train_data = np.zeros((steps, 16, img_width, img_height, 3)) | |
train_target = np.zeros((steps, 16, 2), np.int8) | |
for i in range(steps): | |
next_data = train_generator.next() | |
train_data[i] = next_data[0] | |
train_target[i] = to_categorical(next_data[1], num_classes=2) | |
def train_input_fn(): | |
i = np.random.randint(100) | |
return (train_data[i], train_target[i]) | |
model = nasnet.NASNetMobile( | |
input_shape=input_shape, weights=None, classes=2) | |
# model.summary() | |
model.compile( | |
optimizer='sgd', | |
loss='categorical_crossentropy', | |
metrics=['categorical_accuracy']) | |
config = run_config_lib.RunConfig(save_summary_steps=1, save_checkpoints_steps=1, log_step_count_steps=1) | |
nasnet_estimator = keras_lib.model_to_estimator( | |
keras_model=model, | |
model_dir='/result', | |
config=config) | |
for _ in range(epochs): | |
nasnet_estimator.train(input_fn=train_input_fn, steps=2) | |
nasnet_estimator.evaluate(input_fn=train_input_fn, steps=1) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment