Created
July 10, 2017 06:42
-
-
Save szm-R/32592fc968c65ce2d2b96f42bc33657e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "DarkNet" | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 224 | |
dim: 224 | |
} | |
##################################################################### | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 32 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv1/relu" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "conv2" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv2/relu" | |
type: "ReLU" | |
bottom: "conv2" | |
top: "conv2" | |
} | |
layer { | |
name: "pool2" | |
type: "Pooling" | |
bottom: "conv2" | |
top: "pool2" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
##################################################################### | |
layer { | |
name: "conv3" | |
type: "Convolution" | |
bottom: "pool2" | |
top: "conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv3/relu" | |
type: "ReLU" | |
bottom: "conv3" | |
top: "conv3" | |
} | |
layer { | |
name: "conv4" | |
type: "Convolution" | |
bottom: "conv3" | |
top: "conv4" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 64 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv4/relu" | |
type: "ReLU" | |
bottom: "conv4" | |
top: "conv4" | |
} | |
layer { | |
name: "conv5" | |
type: "Convolution" | |
bottom: "conv4" | |
top: "conv5" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv5/relu" | |
type: "ReLU" | |
bottom: "conv5" | |
top: "conv5" | |
} | |
##################################################################### | |
layer { | |
name: "pool3" | |
type: "Pooling" | |
bottom: "conv5" | |
top: "pool3" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
##################################################################### | |
layer { | |
name: "conv6" | |
type: "Convolution" | |
bottom: "pool3" | |
top: "conv6" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv6/relu" | |
type: "ReLU" | |
bottom: "conv6" | |
top: "conv6" | |
} | |
layer { | |
name: "conv7" | |
type: "Convolution" | |
bottom: "conv6" | |
top: "conv7" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv7/relu" | |
type: "ReLU" | |
bottom: "conv7" | |
top: "conv7" | |
} | |
layer { | |
name: "conv8" | |
type: "Convolution" | |
bottom: "conv7" | |
top: "conv8" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv8/relu" | |
type: "ReLU" | |
bottom: "conv8" | |
top: "conv8" | |
} | |
##################################################################### | |
layer { | |
name: "pool4" | |
type: "Pooling" | |
bottom: "conv8" | |
top: "pool4" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
##################################################################### | |
layer { | |
name: "conv9" | |
type: "Convolution" | |
bottom: "pool4" | |
top: "conv9" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv9/relu" | |
type: "ReLU" | |
bottom: "conv9" | |
top: "conv9" | |
} | |
layer { | |
name: "conv10" | |
type: "Convolution" | |
bottom: "conv9" | |
top: "conv10" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv10/relu" | |
type: "ReLU" | |
bottom: "conv10" | |
top: "conv10" | |
} | |
layer { | |
name: "conv11" | |
type: "Convolution" | |
bottom: "conv10" | |
top: "conv11" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv11/relu" | |
type: "ReLU" | |
bottom: "conv11" | |
top: "conv11" | |
} | |
layer { | |
name: "conv12" | |
type: "Convolution" | |
bottom: "conv11" | |
top: "conv12" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv12/relu" | |
type: "ReLU" | |
bottom: "conv12" | |
top: "conv12" | |
} | |
layer { | |
name: "conv13" | |
type: "Convolution" | |
bottom: "conv12" | |
top: "conv13" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv13/relu" | |
type: "ReLU" | |
bottom: "conv13" | |
top: "conv13" | |
} | |
##################################################################### | |
layer { | |
name: "pool5" | |
type: "Pooling" | |
bottom: "conv13" | |
top: "pool5" | |
pooling_param { | |
pool: MAX | |
kernel_size: 2 | |
stride: 2 | |
} | |
} | |
##################################################################### | |
layer { | |
name: "conv14" | |
type: "Convolution" | |
bottom: "pool5" | |
top: "conv14" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv14/relu" | |
type: "ReLU" | |
bottom: "conv14" | |
top: "conv14" | |
} | |
layer { | |
name: "conv15" | |
type: "Convolution" | |
bottom: "conv14" | |
top: "conv15" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv15/relu" | |
type: "ReLU" | |
bottom: "conv15" | |
top: "conv15" | |
} | |
layer { | |
name: "conv16" | |
type: "Convolution" | |
bottom: "conv15" | |
top: "conv16" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv16/relu" | |
type: "ReLU" | |
bottom: "conv16" | |
top: "conv16" | |
} | |
layer { | |
name: "conv17" | |
type: "Convolution" | |
bottom: "conv16" | |
top: "conv17" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv17/relu" | |
type: "ReLU" | |
bottom: "conv17" | |
top: "conv17" | |
} | |
layer { | |
name: "conv18" | |
type: "Convolution" | |
bottom: "conv17" | |
top: "conv18" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1024 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv18/relu" | |
type: "ReLU" | |
bottom: "conv18" | |
top: "conv18" | |
} | |
##################################################################### | |
layer { | |
name: "conv19" | |
type: "Convolution" | |
bottom: "conv18" | |
top: "conv19" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 1000 | |
pad: 0 | |
kernel_size: 1 | |
weight_filler { | |
type: "msra" | |
variance_norm: AVERAGE | |
} | |
bias_filler { | |
type: "constant" | |
value: 0.2 | |
} | |
} | |
} | |
layer { | |
name: "conv19/relu" | |
type: "ReLU" | |
bottom: "conv19" | |
top: "conv19" | |
} | |
layer { | |
name: "pool6" | |
type: "Pooling" | |
bottom: "conv19" | |
top: "pool6" | |
pooling_param { | |
pool: AVE | |
global_pooling: true | |
} | |
} | |
layer { | |
name: "softmax" | |
type: "Softmax" | |
bottom: "pool6" | |
top: "softmax" | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment