Created
July 8, 2017 17:21
-
-
Save szm-R/15df41b14cdc949fc1d85f0b58e0f585 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: "DNetSqueezeNet" | |
layer { | |
name: "train_data" | |
type: "Data" | |
top: "data" | |
data_param { | |
backend: LMDB | |
source: "examples/kitti/kitti_train_images.lmdb" | |
batch_size: 8 | |
} | |
include: { phase: TRAIN } | |
} | |
layer { | |
name: "train_label" | |
type: "Data" | |
top: "label" | |
data_param { | |
backend: LMDB | |
source: "examples/kitti/kitti_train_labels.lmdb" | |
batch_size: 8 | |
} | |
include: { phase: TRAIN } | |
} | |
layer { | |
name: "val_data" | |
type: "Data" | |
top: "data" | |
data_param { | |
backend: LMDB | |
source: "examples/kitti/kitti_test_images.lmdb" | |
batch_size: 6 | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "val_label" | |
type: "Data" | |
top: "label" | |
data_param { | |
backend: LMDB | |
source: "examples/kitti/kitti_test_labels.lmdb" | |
batch_size: 6 | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "deploy_data" | |
type: "Input" | |
top: "data" | |
input_param { | |
shape { | |
dim: 1 | |
dim: 3 | |
dim: 240 | |
dim: 320 | |
} | |
} | |
include: { phase: TEST not_stage: "val" } | |
} | |
# Data transformation layers | |
layer { | |
name: "train_transform" | |
type: "DetectNetTransformation" | |
bottom: "data" | |
bottom: "label" | |
top: "transformed_data" | |
top: "transformed_label" | |
detectnet_groundtruth_param: { | |
stride: 4 | |
scale_cvg: 0.4 | |
gridbox_type: GRIDBOX_MIN | |
coverage_type: RECTANGULAR | |
min_cvg_len: 20 | |
obj_norm: true | |
image_size_x: 320 | |
image_size_y: 240 | |
crop_bboxes: false | |
object_class: { src: 4 dst: 0} # obj class 4 -> cvg index 0 | |
object_class: { src: 3 dst: 1} # obj class 3 -> cvg index 1 | |
object_class: { src: 1 dst: 2} # obj class 1 -> cvg index 2 | |
} | |
detectnet_augmentation_param: { | |
crop_prob: 1 | |
shift_x: 32 | |
shift_y: 32 | |
flip_prob: 0.5 | |
rotation_prob: 0 | |
max_rotate_degree: 5 | |
scale_prob: 0.4 | |
scale_min: 0.8 | |
scale_max: 1.2 | |
hue_rotation_prob: 0.8 | |
hue_rotation: 30 | |
desaturation_prob: 0.8 | |
desaturation_max: 0.8 | |
} | |
transform_param: { | |
mean_value: 127 | |
} | |
include: { phase: TRAIN } | |
} | |
layer { | |
name: "val_transform" | |
type: "DetectNetTransformation" | |
bottom: "data" | |
bottom: "label" | |
top: "transformed_data" | |
top: "transformed_label" | |
detectnet_groundtruth_param: { | |
stride: 4 | |
scale_cvg: 0.4 | |
gridbox_type: GRIDBOX_MIN | |
coverage_type: RECTANGULAR | |
min_cvg_len: 20 | |
obj_norm: true | |
image_size_x: 320 | |
image_size_y: 240 | |
crop_bboxes: false | |
object_class: { src: 4 dst: 0} # obj class 4 -> cvg index 0 | |
object_class: { src: 3 dst: 1} # obj class 3 -> cvg index 1 | |
object_class: { src: 1 dst: 2} # obj class 1 -> cvg index 2 | |
} | |
transform_param: { | |
mean_value: 127 | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "deploy_transform" | |
type: "Power" | |
bottom: "data" | |
top: "transformed_data" | |
power_param { | |
shift: -127 | |
} | |
include: { phase: TEST not_stage: "val" } | |
} | |
# Label conversion layers | |
layer { | |
name: "slice-label" | |
type: "Slice" | |
bottom: "transformed_label" | |
top: "foreground-label" | |
top: "bbox-label" | |
top: "size-label" | |
top: "obj-label" | |
top: "coverage-label" | |
slice_param { | |
slice_dim: 1 | |
slice_point: 1 | |
slice_point: 5 | |
slice_point: 7 | |
slice_point: 8 | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "coverage-block" | |
type: "Concat" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
bottom: "foreground-label" | |
top: "coverage-block" | |
concat_param { | |
concat_dim: 1 | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "size-block" | |
type: "Concat" | |
bottom: "size-label" | |
bottom: "size-label" | |
top: "size-block" | |
concat_param { | |
concat_dim: 1 | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "obj-block" | |
type: "Concat" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
bottom: "obj-label" | |
top: "obj-block" | |
concat_param { | |
concat_dim: 1 | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "bb-label-norm" | |
type: "Eltwise" | |
bottom: "bbox-label" | |
bottom: "size-block" | |
top: "bbox-label-norm" | |
eltwise_param { | |
operation: PROD | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "bb-obj-norm" | |
type: "Eltwise" | |
bottom: "bbox-label-norm" | |
bottom: "obj-block" | |
top: "bbox-obj-label-norm" | |
eltwise_param { | |
operation: PROD | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
###################################################################### | |
# Start of convolutional network | |
###################################################################### | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "transformed_data" | |
top: "conv1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 3 | |
stride: 2 | |
pad: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "relu_conv1" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "fire2/squeeze1x1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "fire2/squeeze1x1" | |
convolution_param { | |
num_output: 16 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire2/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire2/squeeze1x1" | |
top: "fire2/squeeze1x1" | |
} | |
layer { | |
name: "fire2/expand1x1" | |
type: "Convolution" | |
bottom: "fire2/squeeze1x1" | |
top: "fire2/expand1x1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire2/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire2/expand1x1" | |
top: "fire2/expand1x1" | |
} | |
layer { | |
name: "fire2/expand3x3" | |
type: "Convolution" | |
bottom: "fire2/squeeze1x1" | |
top: "fire2/expand3x3" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire2/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire2/expand3x3" | |
top: "fire2/expand3x3" | |
} | |
layer { | |
name: "fire2/concat" | |
type: "Concat" | |
bottom: "fire2/expand1x1" | |
bottom: "fire2/expand3x3" | |
top: "fire2/concat" | |
} | |
layer { | |
name: "fire3/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire2/concat" | |
top: "fire3/squeeze1x1" | |
convolution_param { | |
num_output: 16 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire3/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire3/squeeze1x1" | |
top: "fire3/squeeze1x1" | |
} | |
layer { | |
name: "fire3/expand1x1" | |
type: "Convolution" | |
bottom: "fire3/squeeze1x1" | |
top: "fire3/expand1x1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire3/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire3/expand1x1" | |
top: "fire3/expand1x1" | |
} | |
layer { | |
name: "fire3/expand3x3" | |
type: "Convolution" | |
bottom: "fire3/squeeze1x1" | |
top: "fire3/expand3x3" | |
convolution_param { | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire3/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire3/expand3x3" | |
top: "fire3/expand3x3" | |
} | |
layer { | |
name: "fire3/concat" | |
type: "Concat" | |
bottom: "fire3/expand1x1" | |
bottom: "fire3/expand3x3" | |
top: "fire3/concat" | |
} | |
layer { | |
name: "fire4/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire3/concat" | |
top: "fire4/squeeze1x1" | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire4/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire4/squeeze1x1" | |
top: "fire4/squeeze1x1" | |
} | |
layer { | |
name: "fire4/expand1x1" | |
type: "Convolution" | |
bottom: "fire4/squeeze1x1" | |
top: "fire4/expand1x1" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire4/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire4/expand1x1" | |
top: "fire4/expand1x1" | |
} | |
layer { | |
name: "fire4/expand3x3" | |
type: "Convolution" | |
bottom: "fire4/squeeze1x1" | |
top: "fire4/expand3x3" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire4/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire4/expand3x3" | |
top: "fire4/expand3x3" | |
} | |
layer { | |
name: "fire4/concat" | |
type: "Concat" | |
bottom: "fire4/expand1x1" | |
bottom: "fire4/expand3x3" | |
top: "fire4/concat" | |
} | |
layer { | |
name: "fire5/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire4/concat" | |
top: "fire5/squeeze1x1" | |
convolution_param { | |
num_output: 32 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire5/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire5/squeeze1x1" | |
top: "fire5/squeeze1x1" | |
} | |
layer { | |
name: "fire5/expand1x1" | |
type: "Convolution" | |
bottom: "fire5/squeeze1x1" | |
top: "fire5/expand1x1" | |
convolution_param { | |
num_output: 128 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire5/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire5/expand1x1" | |
top: "fire5/expand1x1" | |
} | |
layer { | |
name: "fire5/expand3x3" | |
type: "Convolution" | |
bottom: "fire5/squeeze1x1" | |
top: "fire5/expand3x3" | |
convolution_param { | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire5/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire5/expand3x3" | |
top: "fire5/expand3x3" | |
} | |
layer { | |
name: "fire5/concat" | |
type: "Concat" | |
bottom: "fire5/expand1x1" | |
bottom: "fire5/expand3x3" | |
top: "fire5/concat" | |
} | |
layer { | |
name: "fire6/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire5/concat" | |
top: "fire6/squeeze1x1" | |
convolution_param { | |
num_output: 48 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire6/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire6/squeeze1x1" | |
top: "fire6/squeeze1x1" | |
} | |
layer { | |
name: "fire6/expand1x1" | |
type: "Convolution" | |
bottom: "fire6/squeeze1x1" | |
top: "fire6/expand1x1" | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire6/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire6/expand1x1" | |
top: "fire6/expand1x1" | |
} | |
layer { | |
name: "fire6/expand3x3" | |
type: "Convolution" | |
bottom: "fire6/squeeze1x1" | |
top: "fire6/expand3x3" | |
convolution_param { | |
num_output: 192 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire6/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire6/expand3x3" | |
top: "fire6/expand3x3" | |
} | |
layer { | |
name: "fire6/concat" | |
type: "Concat" | |
bottom: "fire6/expand1x1" | |
bottom: "fire6/expand3x3" | |
top: "fire6/concat" | |
} | |
layer { | |
name: "fire7/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire6/concat" | |
top: "fire7/squeeze1x1" | |
convolution_param { | |
num_output: 48 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire7/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire7/squeeze1x1" | |
top: "fire7/squeeze1x1" | |
} | |
layer { | |
name: "fire7/expand1x1" | |
type: "Convolution" | |
bottom: "fire7/squeeze1x1" | |
top: "fire7/expand1x1" | |
convolution_param { | |
num_output: 192 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire7/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire7/expand1x1" | |
top: "fire7/expand1x1" | |
} | |
layer { | |
name: "fire7/expand3x3" | |
type: "Convolution" | |
bottom: "fire7/squeeze1x1" | |
top: "fire7/expand3x3" | |
convolution_param { | |
num_output: 192 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire7/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire7/expand3x3" | |
top: "fire7/expand3x3" | |
} | |
layer { | |
name: "fire7/concat" | |
type: "Concat" | |
bottom: "fire7/expand1x1" | |
bottom: "fire7/expand3x3" | |
top: "fire7/concat" | |
} | |
layer { | |
name: "fire8/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire7/concat" | |
top: "fire8/squeeze1x1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire8/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire8/squeeze1x1" | |
top: "fire8/squeeze1x1" | |
} | |
layer { | |
name: "fire8/expand1x1" | |
type: "Convolution" | |
bottom: "fire8/squeeze1x1" | |
top: "fire8/expand1x1" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire8/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire8/expand1x1" | |
top: "fire8/expand1x1" | |
} | |
layer { | |
name: "fire8/expand3x3" | |
type: "Convolution" | |
bottom: "fire8/squeeze1x1" | |
top: "fire8/expand3x3" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire8/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire8/expand3x3" | |
top: "fire8/expand3x3" | |
} | |
layer { | |
name: "fire8/concat" | |
type: "Concat" | |
bottom: "fire8/expand1x1" | |
bottom: "fire8/expand3x3" | |
top: "fire8/concat" | |
} | |
layer { | |
name: "fire9/squeeze1x1" | |
type: "Convolution" | |
bottom: "fire8/concat" | |
top: "fire9/squeeze1x1" | |
convolution_param { | |
num_output: 64 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire9/relu_squeeze1x1" | |
type: "ReLU" | |
bottom: "fire9/squeeze1x1" | |
top: "fire9/squeeze1x1" | |
} | |
layer { | |
name: "fire9/expand1x1" | |
type: "Convolution" | |
bottom: "fire9/squeeze1x1" | |
top: "fire9/expand1x1" | |
convolution_param { | |
num_output: 256 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire9/relu_expand1x1" | |
type: "ReLU" | |
bottom: "fire9/expand1x1" | |
top: "fire9/expand1x1" | |
} | |
layer { | |
name: "fire9/expand3x3" | |
type: "Convolution" | |
bottom: "fire9/squeeze1x1" | |
top: "fire9/expand3x3" | |
convolution_param { | |
num_output: 256 | |
pad: 1 | |
kernel_size: 3 | |
weight_filler { | |
type: "xavier" | |
} | |
} | |
} | |
layer { | |
name: "fire9/relu_expand3x3" | |
type: "ReLU" | |
bottom: "fire9/expand3x3" | |
top: "fire9/expand3x3" | |
} | |
layer { | |
name: "fire9/concat" | |
type: "Concat" | |
bottom: "fire9/expand1x1" | |
bottom: "fire9/expand3x3" | |
top: "fire9/concat" | |
} | |
layer { | |
name: "drop9" | |
type: "Dropout" | |
bottom: "fire9/concat" | |
top: "fire9/concat" | |
dropout_param { | |
dropout_ratio: 0.5 | |
} | |
} | |
layer { | |
name: "conv10" | |
type: "Convolution" | |
bottom: "fire9/concat" | |
top: "conv10" | |
convolution_param { | |
num_output: 1000 | |
kernel_size: 1 | |
weight_filler { | |
type: "gaussian" | |
mean: 0.0 | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "relu_conv10" | |
type: "ReLU" | |
bottom: "conv10" | |
top: "conv10" | |
} | |
layer { | |
name: "cvg/classifier" | |
type: "Convolution" | |
bottom: "conv10" | |
top: "cvg/classifier" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 3 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0. | |
} | |
} | |
} | |
layer { | |
name: "coverage/sig" | |
type: "Sigmoid" | |
bottom: "cvg/classifier" | |
top: "coverage" | |
} | |
layer { | |
name: "bbox/regressor" | |
type: "Convolution" | |
bottom: "conv10" | |
top: "bboxes" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
param { | |
lr_mult: 2 | |
decay_mult: 0 | |
} | |
convolution_param { | |
num_output: 4 | |
kernel_size: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.03 | |
} | |
bias_filler { | |
type: "constant" | |
value: 0. | |
} | |
} | |
} | |
###################################################################### | |
# End of convolutional network | |
###################################################################### | |
# Convert bboxes | |
layer { | |
name: "bbox_mask" | |
type: "Eltwise" | |
bottom: "bboxes" | |
bottom: "coverage-block" | |
top: "bboxes-masked" | |
eltwise_param { | |
operation: PROD | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "bbox-norm" | |
type: "Eltwise" | |
bottom: "bboxes-masked" | |
bottom: "size-block" | |
top: "bboxes-masked-norm" | |
eltwise_param { | |
operation: PROD | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "bbox-obj-norm" | |
type: "Eltwise" | |
bottom: "bboxes-masked-norm" | |
bottom: "obj-block" | |
top: "bboxes-obj-masked-norm" | |
eltwise_param { | |
operation: PROD | |
} | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
# Loss layers | |
layer { | |
name: "bbox_loss" | |
type: "L1Loss" | |
bottom: "bboxes-obj-masked-norm" | |
bottom: "bbox-obj-label-norm" | |
top: "loss_bbox" | |
loss_weight: 2 | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
layer { | |
name: "coverage_loss" | |
type: "EuclideanLoss" | |
bottom: "coverage" | |
bottom: "coverage-label" | |
top: "loss_coverage" | |
include { phase: TRAIN } | |
include { phase: TEST stage: "val" } | |
} | |
# Cluster bboxes | |
layer { | |
type: 'Python' | |
name: 'cluster' | |
bottom: 'coverage' | |
bottom: 'bboxes' | |
top: 'bbox-list-class0' | |
top: 'bbox-list-class1' | |
top: 'bbox-list-class2' | |
python_param { | |
module: 'caffe.layers.detectnet.clustering' | |
layer: 'ClusterDetections' | |
param_str : '320, 240, 4, 0.4, 2, 0.02, 0, 3' | |
} | |
include: { phase: TEST } | |
} | |
# Calculate mean average precision | |
layer { | |
type: 'Python' | |
name: 'cluster_gt' | |
bottom: 'coverage-label' | |
bottom: 'bbox-label' | |
top: 'bbox-list-label-class0' | |
top: 'bbox-list-label-class1' | |
top: 'bbox-list-label-class2' | |
python_param { | |
module: 'caffe.layers.detectnet.clustering' | |
layer: 'ClusterGroundtruth' | |
param_str : '320, 240, 4, 3' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'score-class0' | |
bottom: 'bbox-list-label-class0' | |
bottom: 'bbox-list-class0' | |
top: 'bbox-list-scored-class0' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'ScoreDetections' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'mAP-class0' | |
bottom: 'bbox-list-scored-class0' | |
top: 'mAP-class0' | |
top: 'precision-class0' | |
top: 'recall-class0' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'mAP' | |
param_str : '320, 240, 4' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'score-class1' | |
bottom: 'bbox-list-label-class1' | |
bottom: 'bbox-list-class1' | |
top: 'bbox-list-scored-class1' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'ScoreDetections' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'mAP-class1' | |
bottom: 'bbox-list-scored-class1' | |
top: 'mAP-class1' | |
top: 'precision-class1' | |
top: 'recall-class1' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'mAP' | |
param_str : '320, 240, 4' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'score-class2' | |
bottom: 'bbox-list-label-class2' | |
bottom: 'bbox-list-class2' | |
top: 'bbox-list-scored-class2' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'ScoreDetections' | |
} | |
include: { phase: TEST stage: "val" } | |
} | |
layer { | |
type: 'Python' | |
name: 'mAP-class2' | |
bottom: 'bbox-list-scored-class2' | |
top: 'mAP-class2' | |
top: 'precision-class2' | |
top: 'recall-class2' | |
python_param { | |
module: 'caffe.layers.detectnet.mean_ap' | |
layer: 'mAP' | |
param_str : '320, 240, 4' | |
} | |
include: { phase: TEST stage: "val" } | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment