Last active
March 26, 2024 09:48
-
-
Save st1vms/11379bd1c0b5fcdfb9564a4db055efa8 to your computer and use it in GitHub Desktop.
Knapsack 0-1 solver
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""Binary Knapsack solver""" | |
from sys import exit as sys_exit | |
def ask_number(prompt: str) -> int | None: | |
"""Asks an integer number repeatedly""" | |
while True: | |
try: | |
return int(input(prompt).strip()) | |
except ValueError: | |
continue | |
except KeyboardInterrupt: | |
return None | |
def ask_num_vector(n: int) -> list[int] | None: | |
"""Asks integer values for each i-th object, having `n` total objects""" | |
vec = [] | |
for i in range(n): | |
p = ask_number(f"\nInsert value for the object x{i+1}\n>>") | |
if p is None: | |
return None | |
if p < 0: | |
print("\nProfit value must be >= 0") | |
return None | |
vec.append(p) | |
return vec | |
def print_matrix(matrix: list[list[int]]) -> None: | |
"""Pretty print a matrix""" | |
for row in matrix: | |
print(" ".join(str(element) for element in row)) | |
def solve( | |
profits_vec: list[int], weights_vec: list[int], n_objects: int, total_cap: int | |
) -> tuple[int, list[bool]] | None: | |
"""Solves knapsack 0-1 | |
Returns a two elements tuple, with the first element being the optimal value, | |
the second element is the optimal (binary) solution. | |
Returns None in case of errors... | |
""" | |
matrix = [[None for _ in range(n_objects + 1)] for _ in range(total_cap + 1)] | |
# Sets first row and column with 0 | |
for i in range(n_objects + 1): | |
matrix[0][i] = 0 | |
for i in range(total_cap + 1): | |
matrix[i][0] = 0 | |
# Finds the optimal value | |
for k in range(1, total_cap + 1): | |
for i in range(1, n_objects + 1): | |
p = profits_vec[i - 1] | |
w = weights_vec[i - 1] | |
if k >= w: | |
matrix[k][i] = max(matrix[k][i - 1], p + matrix[k - w][i - 1]) | |
else: | |
matrix[k][i] = matrix[k][i - 1] | |
print_matrix(matrix) | |
# Optimal value found | |
zstar = matrix[total_cap][n_objects] | |
xstar = [False] * n_objects | |
# Find optimal solution | |
xstar[n_objects - 1] = bool(zstar) | |
for i in range(n_objects - 1, 0, -1): | |
if ( | |
total_cap >= weights_vec[i - 1] | |
and matrix[total_cap][i] != matrix[total_cap - weights_vec[i - 1]][i - 1] | |
): | |
total_cap -= weights_vec[i - 1] | |
xstar[i - 1] = True | |
return (zstar, xstar) | |
def __main( | |
profits_vec: list[int] = None, | |
weights_vec: list[int] = None, | |
n_objects: int = None, | |
total_cap: int = None, | |
): | |
"""Main entry point""" | |
if n_objects is None: | |
n_objects = ask_number("\nHow many objects?\n>>") | |
if n_objects is None or n_objects <= 0: | |
print("\nMust be > 0") | |
return -1 | |
if total_cap is None: | |
total_cap = ask_number("\nTotal capacity of the sack?\n>>") | |
if total_cap is None or total_cap < 0: | |
print("\nMust be >= 0") | |
return -1 | |
if profits_vec is None: | |
print("\nPlease insert the profit values for each i-th object...") | |
profits_vec = ask_num_vector(n_objects) | |
if weights_vec is None: | |
print("\nPlease insert the weights values for each i-th object...") | |
weights_vec = ask_num_vector(n_objects) | |
zstar, xstar = solve(profits_vec, weights_vec, n_objects, total_cap) | |
print( | |
"\nz = " + " + ".join((f"{p}(x{i+1})" for i, p in enumerate(profits_vec))), | |
end="\n\n", | |
) | |
print( | |
" + ".join((f"{w}(x{i+1})" for i, w in enumerate(weights_vec))) | |
+ f" <= {total_cap}" | |
) | |
print("\nxi ∈ {0,1} i = {" + " ".join(str(i + 1) for i in range(n_objects)) + "}") | |
print("\nSolution is x* = |" + " ".join("1" if b else "0" for b in xstar) + "|") | |
print(f"\nOptimal is z* = {zstar}") | |
return 0 | |
if __name__ == "__main__": | |
sys_exit(__main()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment