Skip to content

Instantly share code, notes, and snippets.

View smellslikeml's full-sized avatar
👃
You smell that?

smellslikeml smellslikeml

👃
You smell that?
View GitHub Profile
@smellslikeml
smellslikeml / app.py
Last active May 29, 2024 20:08
Example using custom LLM with Fast API
import torch
from fastapi import FastAPI, Request
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_name = "name of model"
prompt_template = """ ### Input: {} ### Response: {}"""
stop_token_ids = [0]
app = FastAPI()
@smellslikeml
smellslikeml / llm_request_aggregator.py
Created March 11, 2024 18:00
Uses NATS to aggregate responses from workers publishing LLM inference to the subject inference.requests
import asyncio
import nats
import uuid
async def aggregate_inferences(nats_url, request_subject, data, timeout=10):
nc = await nats.connect(nats_url)
responses = []
@smellslikeml
smellslikeml / llm_worker.py
Last active March 11, 2024 18:27
Uses NATS to publish responses of LLM inference to the subject inference.requests
# Launch nats-server
# wget https://huggingface.co/remyxai/stablelm-zephyr-3B_localmentor/resolve/main/ggml-model-q4_0.gguf -o stablelm-localmentor_2.gguf
import nats
import asyncio
from llama_cpp import Llama
async def llm_runner(nats_url, model_path, subject):
nc = await nats.connect(nats_url)
llm = Llama(model_path)
@smellslikeml
smellslikeml / train_dreambooth_lora_sdxl.py
Created December 20, 2023 23:17
Modified data loader - train_dreambooth_lora_sdxl.py
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
@smellslikeml
smellslikeml / concat_script.sh
Created June 26, 2023 04:03
Concatenate videos with ffmpeg
#!/bin/bash
# Ensure a list of clips is provided
if [ $# -eq 0 ]; then
echo "Please provide a list of clips to process and concatenate."
exit 1
fi
# Directory to store processed clips
mkdir -p processed_clips
@smellslikeml
smellslikeml / video_llama_eval.yaml
Created June 25, 2023 22:38
Video-LLaMA eval config for Colab
model:
arch: video_llama
model_type: pretrain_vicuna
freeze_vit: True
freeze_qformer: True
max_txt_len: 160
end_sym: "###"
low_resource: True
frozen_llama_proj: False
@smellslikeml
smellslikeml / client_example.py
Last active April 19, 2023 03:09
U^2Net Triton Inference Server
import os
import time
import cv2
import hashlib
import numpy as np
from PIL import Image
from absl import logging
import tritonclient.http
@smellslikeml
smellslikeml / marker_viz.py
Created April 23, 2022 14:29
example of visualizing markers
#!/usr/bin/env python3
import sys
import rospy
import rostopic
import numpy as np
import message_filters
import cv2
import numpy as np
from collections import deque
# https://github.com/elliottzheng/face-detection
from face_detection import RetinaFace
# https://pyscenedetect.readthedocs.io/projects/Manual/en/latest/api/scene_manager.html#scenemanager-example
from scenedetect import VideoManager
from scenedetect import SceneManager
# http://index-of.es/Varios-2/Practical%20Python%20AI%20Projects%20Mathemathical%20Models%20of%20Optimization%20Problems%20with%20Google%20OR-Tools.pdf
# coding: utf-8
"""
Example code for solving the transshipment problem. (pg. 111)
Input is an NxN numpy matrix (referenced here as D)
where row N is the demand and column N is the supply for each location 0 through N-1.
To solve, call the solve_model() function with matrix D as the input.
"""