-
-
Save skeeet/3cd6cefc233706a6c62afe16c776b6b5 to your computer and use it in GitHub Desktop.
minimal pytorch 1.0 pytorch -> C++ full example demo image at: https://i.imgur.com/hiWRITj.jpg
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
cmake_minimum_required(VERSION 3.0 FATAL_ERROR) | |
project(cpp_shim) | |
set(CMAKE_PREFIX_PATH ../libtorch) | |
find_package(Torch REQUIRED) | |
find_package(OpenCV REQUIRED) | |
add_executable(testing main.cpp) | |
message(STATUS "OpenCV library status:") | |
message(STATUS " config: ${OpenCV_DIR}") | |
message(STATUS " version: ${OpenCV_VERSION}") | |
message(STATUS " libraries: ${OpenCV_LIBS}") | |
message(STATUS " include path: ${OpenCV_INCLUDE_DIRS}") | |
message(STATUS "TORCHLIB: ${TORCH_LIBRARIES}") | |
#target_include_directories(testing PRIVATE ${TORCH_INCLUDE_DIRS} ${OpenCV_INCLUDE_DIRS}) | |
target_link_libraries(testing ${OpenCV_LIBS}) | |
target_link_libraries(testing ${TORCH_LIBRARIES}) | |
target_compile_definitions(testing PRIVATE -D_GLIBCXX_USE_CXX11_ABI=0) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.jit import ScriptModule, script_method, trace | |
class MyScriptModule(ScriptModule): | |
# class MyScriptModule(nn.Module): | |
def __init__(self): | |
super(MyScriptModule, self).__init__() | |
# trace produces a ScriptModule's conv1 and conv2 | |
self.conv1 = trace(nn.Conv2d(3, 2, 5).to("cpu"), torch.rand(1, 3, 1266, 1900)) | |
self.conv2 = trace(nn.Conv2d(2, 1, 5).to("cpu"), torch.rand(1, 2, 1266, 1900)) | |
self.lin = trace(nn.Linear(1258*1892, 5), torch.rand(1258*1892)) | |
@script_method | |
def forward(self, input): | |
input = F.relu(self.conv1(input)) | |
input = F.relu(self.conv2(input)) | |
input = input.squeeze() | |
input = input.view(1258*1892) | |
output = self.lin(input) | |
return output | |
test_module = MyScriptModule() | |
print(test_module.graph) | |
if __name__ == "__main__": | |
test_module.save("/tmp/model.pl") | |
# if __name__ == "__main__": | |
# import numpy as np | |
# from PIL import Image | |
# img_path = "/tmp/cat_image.jpg" | |
# img = np.asarray(Image.open(img_path)) | |
# tensor = torch.from_numpy(img).float() | |
# tensor = tensor.view(1, 3, tensor.shape[0], tensor.shape[1]) | |
# test_module.forward(tensor) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// | |
// Created by zeryx on 10/5/18. | |
// | |
#include <torch/script.h> | |
#include <iostream> | |
#include <memory> | |
#include <opencv2/core/core.hpp> | |
#include <opencv2/highgui/highgui.hpp> | |
using namespace cv; | |
int main() { | |
std::string model_path = "/tmp/model.pl"; | |
std::string image_path = "/tmp/cat_image.jpg"; | |
Mat image = imread(image_path); | |
std::vector<int64_t> sizes = {1, 3, image.rows, image.cols}; | |
at::TensorOptions options(at::ScalarType::Byte); | |
at::Tensor tensor_image = torch::from_blob(image.data, at::IntList(sizes), options); | |
tensor_image = tensor_image.toType(at::kFloat); | |
std::ifstream is (model_path, std::ifstream::binary); | |
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load(is); | |
std::vector<torch::jit::IValue> inputs; | |
inputs.emplace_back(tensor_image); | |
at::Tensor result = module->forward(inputs).toTensor(); | |
auto max_result = result.max(0, true); | |
auto max_index = std::get<1>(max_result).item<float>(); | |
std::cout << max_index << std::endl; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment