Created
August 29, 2019 15:20
-
-
Save skaae/b5c8d63eb031aa14a6daf5ae6cd6c9b0 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
data_arr = [ | |
{ | |
"img": np.random.randn(10, 30) | |
}, | |
{ | |
"img": np.random.randn(10, 30) | |
} | |
] | |
def get_example_object(data_record): | |
img_str = data_record["img"].flatten().astype("float32").tostring() | |
feature_key_value_pair = { | |
"img": tf.train.Feature(bytes_list = tf.train.BytesList(value = [img_str])), | |
"img_shp": tf.train.Feature(int64_list = tf.train.Int64List(value = data_record["img"].shape)), | |
} | |
features = tf.train.Features(feature = feature_key_value_pair) | |
return tf.train.Example(features = features) | |
with tf.python_io.TFRecordWriter('example.tfrecord') as tfwriter: | |
# Iterate through all records | |
for data_record in data_arr: | |
example = get_example_object(data_record) | |
tfwriter.write(example.SerializeToString()) | |
def extract_fn(data_record): | |
features = { | |
"img": tf.FixedLenFeature([], tf.string), | |
"img_shp": tf.FixedLenFeature([2], tf.int64) | |
} | |
sample = tf.parse_single_example(data_record, features) | |
sample["img"] = tf.reshape(tf.decode_raw(sample["img"], tf.float32), sample["img_shp"]) | |
return sample | |
# Initialize all tfrecord paths | |
dataset = tf.data.TFRecordDataset(['example.tfrecord']) | |
dataset = dataset.map(extract_fn) | |
iterator = dataset.make_one_shot_iterator() | |
next_element = iterator.get_next() | |
with tf.Session() as sess: | |
try: | |
while True: | |
data_record = sess.run(next_element) | |
print(data_record) | |
except: | |
pass |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment