Created
March 31, 2021 13:12
-
-
Save simutisernestas/d865290613a118ac4c9fc14ba0380418 to your computer and use it in GitHub Desktop.
Trasformation between 2 L-shape pointclouds
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def icp(a, b, | |
max_time = 1 | |
): | |
import cv2 | |
import numpy | |
import copy | |
import pylab | |
import time | |
import sys | |
import sklearn.neighbors | |
import scipy.optimize | |
def res(p,src,dst): | |
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]], | |
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]], | |
[0 ,0 ,1 ]]) | |
n = numpy.size(src,0) | |
xt = numpy.ones([n,3]) | |
xt[:,:-1] = src | |
xt = (xt*T.T).A | |
d = numpy.zeros(numpy.shape(src)) | |
d[:,0] = xt[:,0]-dst[:,0] | |
d[:,1] = xt[:,1]-dst[:,1] | |
r = numpy.sum(numpy.square(d[:,0])+numpy.square(d[:,1])) | |
return r | |
def jac(p,src,dst): | |
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]], | |
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]], | |
[0 ,0 ,1 ]]) | |
n = numpy.size(src,0) | |
xt = numpy.ones([n,3]) | |
xt[:,:-1] = src | |
xt = (xt*T.T).A | |
d = numpy.zeros(numpy.shape(src)) | |
d[:,0] = xt[:,0]-dst[:,0] | |
d[:,1] = xt[:,1]-dst[:,1] | |
dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])], | |
[ numpy.cos(p[2]),-numpy.sin(p[2])]]) | |
dUdth = (src*dUdth_R.T).A | |
g = numpy.array([ numpy.sum(2*d[:,0]), | |
numpy.sum(2*d[:,1]), | |
numpy.sum(2*(d[:,0]*dUdth[:,0]+d[:,1]*dUdth[:,1])) ]) | |
return g | |
def hess(p,src,dst): | |
n = numpy.size(src,0) | |
T = numpy.matrix([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]], | |
[numpy.sin(p[2]), numpy.cos(p[2]),p[1]], | |
[0 ,0 ,1 ]]) | |
n = numpy.size(src,0) | |
xt = numpy.ones([n,3]) | |
xt[:,:-1] = src | |
xt = (xt*T.T).A | |
d = numpy.zeros(numpy.shape(src)) | |
d[:,0] = xt[:,0]-dst[:,0] | |
d[:,1] = xt[:,1]-dst[:,1] | |
dUdth_R = numpy.matrix([[-numpy.sin(p[2]),-numpy.cos(p[2])],[numpy.cos(p[2]),-numpy.sin(p[2])]]) | |
dUdth = (src*dUdth_R.T).A | |
H = numpy.zeros([3,3]) | |
H[0,0] = n*2 | |
H[0,2] = numpy.sum(2*dUdth[:,0]) | |
H[1,1] = n*2 | |
H[1,2] = numpy.sum(2*dUdth[:,1]) | |
H[2,0] = H[0,2] | |
H[2,1] = H[1,2] | |
d2Ud2th_R = numpy.matrix([[-numpy.cos(p[2]), numpy.sin(p[2])],[-numpy.sin(p[2]),-numpy.cos(p[2])]]) | |
d2Ud2th = (src*d2Ud2th_R.T).A | |
H[2,2] = numpy.sum(2*(numpy.square(dUdth[:,0])+numpy.square(dUdth[:,1]) + d[:,0]*d2Ud2th[:,0]+d[:,0]*d2Ud2th[:,0])) | |
return H | |
t0 = time.time() | |
init_pose = (0,0,0) | |
src = numpy.array([a.T], copy=True).astype(numpy.float32) | |
dst = numpy.array([b.T], copy=True).astype(numpy.float32) | |
Tr = numpy.array([[numpy.cos(init_pose[2]),-numpy.sin(init_pose[2]),init_pose[0]], | |
[numpy.sin(init_pose[2]), numpy.cos(init_pose[2]),init_pose[1]], | |
[0, 0, 1 ]]) | |
print("src",numpy.shape(src)) | |
print("Tr[0:2]",numpy.shape(Tr[0:2])) | |
src = cv2.transform(src, Tr[0:2]) | |
p_opt = numpy.array(init_pose) | |
T_opt = numpy.array([]) | |
error_max = sys.maxsize | |
first = False | |
while not(first and time.time() - t0 > max_time): | |
distances, indices = sklearn.neighbors.NearestNeighbors(n_neighbors=1, algorithm='auto',p = 3).fit(dst[0]).kneighbors(src[0]) | |
p = scipy.optimize.minimize(res,[0,0,0],args=(src[0],dst[0, indices.T][0]),method='Newton-CG',jac=jac,hess=hess).x | |
T = numpy.array([[numpy.cos(p[2]),-numpy.sin(p[2]),p[0]],[numpy.sin(p[2]), numpy.cos(p[2]),p[1]]]) | |
p_opt[:2] = (p_opt[:2]*numpy.matrix(T[:2,:2]).T).A | |
p_opt[0] += p[0] | |
p_opt[1] += p[1] | |
p_opt[2] += p[2] | |
src = cv2.transform(src, T) | |
Tr = (numpy.matrix(numpy.vstack((T,[0,0,1])))*numpy.matrix(Tr)).A | |
error = res([0,0,0],src[0],dst[0, indices.T][0]) | |
if error < error_max: | |
error_max = error | |
first = True | |
T_opt = Tr | |
p_opt[2] = p_opt[2] % (2*numpy.pi) | |
return T_opt, error_max | |
def main(): | |
import cv2 | |
import numpy | |
import random | |
import matplotlib.pyplot | |
n2 = 1000 | |
bruit = 10 | |
template = numpy.array([ | |
[0 if i < int(n2/2) else i-int(n2/2) for i in range(n2)], | |
[i if i < int(n2/2) else 0 for i in range(n2)] | |
]) | |
data = numpy.array([ | |
[(1+random.random()*bruit) if i < int(n2/2) else i-int(n2/2) for i in range(n2)], | |
[i if i < int(n2/2) else (1+random.random()*bruit) for i in range(n2)] | |
]) | |
theta = 0.1 | |
for i,(x,y) in enumerate(zip(data[0],data[1])): | |
x = x*numpy.cos(theta) - y*numpy.sin(theta) | |
y = y*numpy.cos(theta) + x*numpy.sin(theta) | |
data[0][i] = x | |
data[1][i] = y | |
T,error = icp(data,template,max_time=1) | |
dx = T[0,2] | |
dy = T[1,2] | |
rotation = numpy.arcsin(T[0,1]) * 360 / 2 / numpy.pi | |
print("T",T) | |
print("error",error) | |
print("rotation°",rotation) | |
print("dx",dx) | |
print("dy",dy) | |
result = cv2.transform(numpy.array([data.T], copy=True).astype(numpy.float32), T).T | |
matplotlib.pyplot.scatter(template[0], template[1], label="template", s=0.1) | |
matplotlib.pyplot.scatter(data[0], data[1], label="data", s=0.1) | |
matplotlib.pyplot.scatter(result[0], result[1], label="result", s=0.1) | |
lgnd = matplotlib.pyplot.legend(loc="upper right") | |
lgnd.legendHandles[0]._sizes = [30] | |
lgnd.legendHandles[1]._sizes = [30] | |
lgnd.legendHandles[2]._sizes = [30] | |
matplotlib.pyplot.axis('square') | |
matplotlib.pyplot.show() | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment