Last active
March 30, 2016 15:45
-
-
Save sidd607/f7c23ef26ec86dc692420ce7dffe2721 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#-------------------Retrieving and Cleaning Data-------------- | |
data = read.csv("filter.csv",header=T, na.strings=c("")) | |
sapply(data, function(x) sum(is.na(x))) | |
data = subset(data,select=c(2,3,5,6,7,8,10,12)) | |
data$Age[is.na(data$Age)] = mean(data$Age, na.rm = T) | |
#is.factor(data$Sex) | |
#is.factor(data$Embarked) | |
data = data[!is.na(data$Embarked),] | |
rownames(data) = NULL | |
trainData = data[1:800,] | |
testData = data[801:889,] | |
#-----------------It starts---------------------------------- | |
#simod | |
g = function(z){ | |
return (1/(1+exp(-z))) | |
} | |
#Hypothesis | |
h = function(x, th){ | |
return (g(x%*%th)) | |
} | |
#cost | |
J = function(x, y, th, m){ | |
return( 1/m * sum(-y * log(h(x,th)) - (1 - y) * log(1 - h(x,th))) ) | |
} | |
# derivative of J (gradient) | |
grad = function (x,y,th,m) { | |
return( 1/m * t(x) %*% (h(x,th) - y)) | |
} # grad(x,y,th,m) | |
# Hessian | |
H = function (x,y,th,m) { | |
return (1/m * t(x) %*% x * diag(h(x,th)) * diag(1 - h(x,th))) | |
} # H(x,y,th,m) | |
#setup | |
j = array(0, c(10, 1)) | |
m = length (trainData$Sex) | |
x = matrix(c(rep(1, m), trainData$Pclass, trainData$Sex, trainData$Age, trainData$SibSp, trainData$Parch, trainData$Fare, trainData$Embarked), | |
ncol =8) | |
y = matrix(trainData$Survived, ncol = 1) | |
th = matrix(0,8) | |
for( i in 1:10){ | |
j[i] = J(x,y,th,m) | |
th = th - solve(H(x,y,th,m)) %*% grad(x,y,th,m) | |
} | |
print (th) | |
plot(j, xlab="iterations", ylab="cost J") | |
test = testData[3,] | |
test3 = rapply(test, c) | |
test2 = c(1,2,3,4,5,6,7,8) | |
ans = g(test3%*%th)[1,1] | |
ans2 = g(c(1,1,1,11,1,2,120,0)%*%th) | |
print(ans) | |
print (ans2) | |
correct = 0 | |
trueTrue = 0 | |
trueFalse = 0 | |
falseTrue = 0 | |
falseFalse = 0 | |
for (i in 1:80){ | |
test = testData[i,] | |
test3 = rapply(test, c) | |
test3[1] = 1 | |
ans = g(test3%*%th)[1,1] | |
if(ans < 0.4) | |
ans = 0 | |
if (ans >= 0.4) | |
ans = 1 | |
final = 0 | |
if (ans == testData[i,]$Survived){ | |
final = 1 | |
if(ans == 0) | |
falseFalse = falseFalse+1 | |
if (ans == 1) | |
trueTrue = trueTrue + 1 | |
} | |
if(ans != testData[i,]$Survived){ | |
if(ans == 1) | |
trueFalse = trueFalse + 1 | |
if(ans == 0) | |
falseTrue = falseTrue + 1 | |
} | |
#tmp = c(ans, testData[i,]$Survived) | |
print (final) | |
correct = correct + final | |
} | |
#---------------------------Summary-------------------------------- | |
print (correct) | |
print ("True True") | |
print (trueTrue) | |
print ("True False") | |
print (trueFalse) | |
print ("False True") | |
print (falseTrue) | |
print ("False False") | |
print (falseFalse) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment