You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Let $n_O \in \mathbb{F}^{N_m}$ such that $n_{O,j} := \begin{cases} w_{O,i} & \text{if } \mathcal{F}^{-1}(n_O, j) = i \\ 0 & \text{otherwise} \end{cases}$
Let $l_X \in \mathbb{F}^{N_v}$ for $X = L, O$ such that
$l_{X,j} := \begin{cases} w_{O,i} & \text{if } \mathcal{F}^{-1}(l_X, j) = i \\ 0 & \text{otherwise} \end{cases}$
$C_X := r_{X,0}G + \langle r_{X,1:}||l_X, \mathbf{H}\rangle + \langle n_X, \mathbf{G}\rangle \in \mathbb{G} \text{ for } X = L, O$
Let $l_R \in \mathbb{F}^{N_v}$ such that
$l_{R,j} := \begin{cases} w_{O,i} & \text{if } \mathcal{F}^{-1}(l_R, j) = i \\ 0 & \text{otherwise} \end{cases}$
$M_{a,n,L} := (\mathbf{W}_{a,i,j})_{0 \leq j \leq N_m-1} \in \mathbb{F}^{N_a \times N_m} \text{ for } a = l, m$
$M_{a,n,R} := (\mathbf{W}_{a,i,j})_{N_m \leq j \leq 2N_m-1} \in \mathbb{F}^{N_a \times N_m} \text{ for } a = l, m$
$\mathbf{W}_{a,O} := (\mathbf{W}_{a,i,j})_{2N_m \leq j \leq N_w-1} \in \mathbb{F}^{N_a \times N_O} \text{ for } a = l, m$
Let $M_{a,n,O} \in \mathbb{F}^{N_a \times N_m}$ for $a = l, m$ such that
$M_{a,n,O,j',j} := \begin{cases} (\mathbf{W}_{a,O,j',i}) & \text{if } \mathcal{F}^{-1}(n_O, j) = i \\ 0 & \text{otherwise} \end{cases}$
Let $M_{a,l,X} \in \mathbb{F}^{N_a \times N_v}$ for $a = l, m$, $X = L, R, O$ such that
$M_{a,l,X,j',j} := \begin{cases} (\mathbf{W}_{a,O,j',i}) & \text{if } \mathcal{F}^{-1}(l_X, j) = i \\ 0 & \text{otherwise} \end{cases}$
$\mathcal{P}, \mathcal{V}$ run the weighted norm linear argument $\langle\mathcal{P}_{nl}, \mathcal{V}_{nl}\rangle = b$ with common input $(G, \mathbf{G}, \mathbf{H}, c(\tau), C(\tau), \mu = \rho^2)$ and prover input $(l(\tau), n(\tau), v(\tau))$.