Created
April 16, 2025 12:10
-
-
Save shauray8/212d8cbf0db5f0c83b0469ddcf716681 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# AOT ID: ['0_inference'] | |
from ctypes import c_void_p, c_long, c_int | |
import torch | |
import math | |
import random | |
import os | |
import tempfile | |
from math import inf, nan | |
from torch._inductor.hooks import run_intermediate_hooks | |
from torch._inductor.utils import maybe_profile | |
from torch._inductor.codegen.memory_planning import _align as align | |
from torch import device, empty_strided | |
from torch._inductor.async_compile import AsyncCompile | |
from torch._inductor.select_algorithm import extern_kernels | |
from torch._inductor.codegen.multi_kernel import MultiKernelCall | |
aten = torch.ops.aten | |
inductor_ops = torch.ops.inductor | |
_quantized = torch.ops._quantized | |
assert_size_stride = torch._C._dynamo.guards.assert_size_stride | |
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu | |
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda | |
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu | |
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor | |
alloc_from_pool = torch.ops.inductor._alloc_from_pool | |
async_compile = AsyncCompile() | |
empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p | |
async_compile.wait(globals()) | |
del async_compile | |
def call(args): | |
arg0_1, arg1_1 = args | |
args.clear() | |
assert_size_stride(arg0_1, (4096, 4096), (4096, 1)) | |
assert_size_stride(arg1_1, (4096, 4096), (4096, 1)) | |
with torch.cuda._DeviceGuard(0): | |
torch.cuda.set_device(0) | |
buf0 = empty_strided_cuda((4096, 4096), (4096, 1), torch.float16) | |
# Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] | |
extern_kernels.mm(arg1_1, arg0_1, out=buf0) | |
del arg0_1 | |
del arg1_1 | |
return (buf0, ) | |
def benchmark_compiled_module(times=10, repeat=10): | |
from torch._dynamo.testing import rand_strided | |
from torch._inductor.utils import print_performance | |
arg0_1 = rand_strided((4096, 4096), (4096, 1), device='cuda:0', dtype=torch.float16) | |
arg1_1 = rand_strided((4096, 4096), (4096, 1), device='cuda:0', dtype=torch.float16) | |
fn = lambda: call([arg0_1, arg1_1]) | |
return print_performance(fn, times=times, repeat=repeat) | |
if __name__ == "__main__": | |
from torch._inductor.wrapper_benchmark import compiled_module_main | |
compiled_module_main('None', benchmark_compiled_module) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment