Last active
January 5, 2025 00:41
-
-
Save sczerwinski/2923c4e23fe8f9adcfa0118f4397a215 to your computer and use it in GitHub Desktop.
Plugin for GIMP, generating spherical normal map.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Copyright 2025 Slawomir Czerwinski | |
Licensed under the Apache License, Version 2.0 (the "License"); | |
you may not use this file except in compliance with the License. | |
You may obtain a copy of the License at | |
http://www.apache.org/licenses/LICENSE-2.0 | |
Unless required by applicable law or agreed to in writing, software | |
distributed under the License is distributed on an "AS IS" BASIS, | |
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
See the License for the specific language governing permissions and | |
limitations under the License. | |
""" | |
""" | |
Sphere Normal Map | |
Plugin for GIMP, generating spherical normal map. | |
Works best with texture sizes between 128-256. | |
""" | |
import math | |
from gimpfu import * | |
def sphere_normal_map(image, drawable, flip_x, flip_y): | |
image.undo_group_start() | |
width = pdb.gimp_image_width(image) | |
height = pdb.gimp_image_height(image) | |
layer = pdb.gimp_layer_new(image, width, height, RGB_IMAGE, "Sphere Normal Map", 100, LAYER_MODE_NORMAL) | |
pdb.gimp_progress_init("Generating sphere normal map...", None) | |
cx = width / 2.0 | |
cy = height / 2.0 | |
width_big_half = width / 2 + width % 2 | |
height_big_half = height / 2 + height % 2 | |
for y in range(height_big_half): | |
pdb.gimp_progress_update(y / cy * 0.99) | |
ry = (cy - y) / cy | |
ry_sq = ry * ry | |
for x in range(width_big_half): | |
rx = (cx - x) / cx | |
r = math.sqrt(rx * rx + ry_sq) | |
phi = math.atan2(ry, rx) | |
theta = math.asin(r) if r < 1.0 else math.pi - math.asin(2.0 - r) | |
sin_theta = math.sin(theta) | |
red = int(127 * math.cos(phi) * sin_theta) | |
green = int(127 * math.sin(phi) * sin_theta) | |
blue = int(127 * math.cos(theta)) | |
normal_x = 128 + red if flip_x else 128 - red | |
normal_y = 128 + green if flip_y else 128 - green | |
normal_z = 128 + blue | |
pdb.gimp_drawable_set_pixel(layer, x, y, 3, (normal_x, normal_y, normal_z)) | |
pdb.gimp_image_insert_layer(image, layer, None, -1) | |
pdb.gimp_progress_update(0.99) | |
pdb.gimp_context_set_feather(0) | |
pdb.gimp_context_set_feather_radius(0, 0) | |
pdb.gimp_image_select_rectangle(image, 2, 0, 0, width / 2, height_big_half) | |
pdb.gimp_edit_copy(layer) | |
floating_selection = pdb.gimp_edit_paste(layer, 0) | |
floating_selection = pdb.gimp_item_transform_flip_simple(floating_selection, 0, 1, 0) | |
floating_selection = pdb.gimp_item_transform_translate(floating_selection, width_big_half, 0) | |
pdb.gimp_drawable_curves_spline(floating_selection, 1, 4, [0, 254, 254, 0]) | |
pdb.gimp_floating_sel_anchor(floating_selection) | |
pdb.gimp_image_select_rectangle(image, 2, 0, 0, width, height / 2) | |
pdb.gimp_edit_copy(layer) | |
floating_selection = pdb.gimp_edit_paste(layer, 0) | |
floating_selection = pdb.gimp_item_transform_flip_simple(floating_selection, 1, 1, 0) | |
floating_selection = pdb.gimp_item_transform_translate(floating_selection, 0, height_big_half) | |
pdb.gimp_drawable_curves_spline(floating_selection, 2, 4, [0, 254, 254, 0]) | |
pdb.gimp_floating_sel_anchor(floating_selection) | |
pdb.gimp_progress_update(1) | |
pdb.gimp_progress_end() | |
pdb.gimp_displays_flush() | |
image.undo_group_end() | |
register( | |
"sphere_normal_map", | |
"Generate spherical normal map", | |
"Generate spherical normal map", | |
"Slawomir Czerwinski", | |
"Slawomir Czerwinski", | |
"2025", | |
"<Image>/Filters/Generic/_Sphere Normal Map", | |
"RGB*", | |
[ | |
(PF_BOOL, "flip_x", "Flip X", False), | |
(PF_BOOL, "flip_y", "Flip Y", False), | |
], | |
[], | |
sphere_normal_map | |
) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment