Last active
June 23, 2025 11:37
-
-
Save scturtle/d81a1e35e335ddb0423cf338f3169460 to your computer and use it in GitHub Desktop.
qwen3
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
from functools import lru_cache | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from transformers import Qwen3Config | |
from transformers import Qwen2TokenizerFast | |
def apply_rotary_emb(x, cos, sin): | |
cos, sin = cos.unsqueeze(-2), sin.unsqueeze(-2) | |
x1, x2 = torch.chunk(x.to(torch.float32), 2, dim=-1) | |
y1 = x1 * cos - x2 * sin | |
y2 = x2 * cos + x1 * sin | |
return torch.cat((y1, y2), dim=-1).to(x.dtype) | |
class RotaryEmbedding(nn.Module): | |
def __init__(self, head_size, rotary_dim, max_position_embeddings, base): | |
super().__init__() | |
self.head_size = head_size | |
assert rotary_dim == head_size | |
inv_freq = 1.0 / ( | |
base ** (torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim) | |
) | |
t = torch.arange(max_position_embeddings, dtype=torch.float) | |
freqs = torch.einsum("i,j -> ij", t, inv_freq) | |
cache = torch.cat((freqs.cos(), freqs.sin()), dim=-1) | |
self.register_buffer("cos_sin_cache", cache, persistent=False) | |
def forward(self, positions, query, key): | |
positions = positions.flatten() | |
num_tokens = positions.shape[0] | |
cos_sin = self.cos_sin_cache[positions] | |
cos, sin = cos_sin.chunk(2, dim=-1) | |
query_shape = query.shape | |
query = query.view(num_tokens, -1, self.head_size) | |
query = apply_rotary_emb(query, cos, sin).view(query_shape) | |
key_shape = key.shape | |
key = key.view(num_tokens, -1, self.head_size) | |
key = apply_rotary_emb(key, cos, sin).view(key_shape) | |
return query, key | |
@lru_cache(1) | |
def get_rope(head_size, rotary_dim, max_position, base): | |
return RotaryEmbedding(head_size, rotary_dim, max_position, base) | |
class RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps: float = 1e-6): | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(hidden_size, dtype=torch.bfloat16)) | |
def forward(self, x, residual=None): | |
orig_dtype = x.dtype | |
x = x.to(torch.float32) | |
if residual is not None: | |
x.add_(residual.to(torch.float32)) | |
residual = x.to(orig_dtype) | |
var = x.pow(2).mean(dim=-1, keepdim=True) | |
x.mul_(torch.rsqrt(var + self.eps)) | |
x = x.to(orig_dtype).mul_(self.weight) | |
return x if residual is None else (x, residual) | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
num_heads, | |
head_dim, | |
scale, | |
num_kv_heads, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.head_dim = head_dim | |
self.scale = scale | |
self.num_kv_heads = num_kv_heads | |
self.k_cache = None | |
self.v_cache = None | |
def forward(self, q, k, v): | |
b = q.shape[0] | |
q = q.view(b, -1, self.num_heads, self.head_dim).transpose(1, 2) | |
k = k.view(b, -1, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
v = v.view(b, -1, self.num_kv_heads, self.head_dim).transpose(1, 2) | |
if self.k_cache is not None: | |
k = torch.cat([self.k_cache, k], dim=2) | |
v = torch.cat([self.v_cache, v], dim=2) | |
self.k_cache = k | |
self.v_cache = v | |
o = F.scaled_dot_product_attention( | |
q, k, v, is_causal=q.size(2) > 1, scale=self.scale, enable_gqa=True | |
) | |
return o.transpose(1, 2).reshape(b, -1, self.num_heads * self.head_dim) | |
class Qwen3Attention(nn.Module): | |
def __init__( | |
self, | |
hidden_size, | |
num_heads, | |
num_kv_heads, | |
max_position, | |
head_dim, | |
rms_norm_eps, | |
qkv_bias, | |
rope_theta, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
self.num_kv_heads = num_kv_heads | |
self.head_dim = head_dim or hidden_size // num_heads | |
self.q_size = num_heads * head_dim | |
self.kv_size = num_kv_heads * head_dim | |
self.scaling = head_dim**-0.5 | |
self.qkv_proj = nn.Linear( | |
hidden_size, | |
self.q_size + 2 * self.kv_size, | |
bias=qkv_bias, | |
dtype=torch.bfloat16, | |
) | |
self.o_proj = nn.Linear( | |
num_heads * head_dim, hidden_size, bias=False, dtype=torch.bfloat16 | |
) | |
self.rotary_emb = get_rope( | |
head_dim, | |
rotary_dim=head_dim, | |
max_position=max_position, | |
base=rope_theta, | |
) | |
self.attn = Attention( | |
num_heads, head_dim, self.scaling, num_kv_heads=num_kv_heads | |
) | |
self.q_norm = RMSNorm(head_dim, eps=rms_norm_eps) | |
self.k_norm = RMSNorm(head_dim, eps=rms_norm_eps) | |
def forward(self, positions, hidden_states): | |
qkv = self.qkv_proj(hidden_states) | |
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) | |
q_by_head = q.view(-1, self.num_heads, self.head_dim) | |
q_by_head = self.q_norm(q_by_head) | |
q = q_by_head.view(q.shape) | |
k_by_head = k.view(-1, self.num_kv_heads, self.head_dim) | |
k_by_head = self.k_norm(k_by_head) | |
k = k_by_head.view(k.shape) | |
q, k = self.rotary_emb(positions, q, k) | |
o = self.attn(q, k, v) | |
return self.o_proj(o) | |
class Qwen3MLP(nn.Module): | |
def __init__(self, hidden_size, intermediate_size): | |
super().__init__() | |
self.gate_up_proj = nn.Linear( | |
hidden_size, intermediate_size * 2, bias=False, dtype=torch.bfloat16 | |
) | |
self.down_proj = nn.Linear( | |
intermediate_size, hidden_size, bias=False, dtype=torch.bfloat16 | |
) | |
def forward(self, x): | |
x, y = self.gate_up_proj(x).chunk(2, -1) | |
return self.down_proj(F.silu(x).mul_(y)) | |
class Qwen3DecoderLayer(nn.Module): | |
def __init__(self, config: Qwen3Config): | |
super().__init__() | |
self.self_attn = Qwen3Attention( | |
hidden_size=config.hidden_size, | |
num_heads=config.num_attention_heads, | |
num_kv_heads=config.num_key_value_heads, | |
max_position=config.max_position_embeddings, | |
qkv_bias=config.attention_bias, | |
rms_norm_eps=config.rms_norm_eps, | |
head_dim=config.head_dim, | |
rope_theta=config.rope_theta, | |
) | |
assert config.hidden_act == "silu" | |
self.mlp = Qwen3MLP( | |
hidden_size=config.hidden_size, | |
intermediate_size=config.intermediate_size, | |
) | |
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.post_attention_layernorm = RMSNorm( | |
config.hidden_size, eps=config.rms_norm_eps | |
) | |
def forward(self, positions, hidden_states, residual): | |
if residual is None: | |
hidden_states, residual = self.input_layernorm(hidden_states), hidden_states | |
else: | |
hidden_states, residual = self.input_layernorm(hidden_states, residual) | |
hidden_states = self.self_attn(positions, hidden_states) | |
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual) | |
return self.mlp(hidden_states), residual | |
class Qwen3ForCausalLM(nn.Module): | |
packed_modules_mapping = { | |
"q_proj": ("qkv_proj", "q"), | |
"k_proj": ("qkv_proj", "k"), | |
"v_proj": ("qkv_proj", "v"), | |
"gate_proj": ("gate_up_proj", 0), | |
"up_proj": ("gate_up_proj", 1), | |
} | |
def __init__(self, config: Qwen3Config): | |
super().__init__() | |
self.embed_tokens = nn.Embedding( | |
config.vocab_size, config.hidden_size, dtype=torch.bfloat16 | |
) | |
self.layers = nn.ModuleList( | |
[Qwen3DecoderLayer(config) for _ in range(config.num_hidden_layers)] | |
) | |
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | |
self.lm_head = nn.Linear( | |
config.hidden_size, config.vocab_size, bias=False, dtype=torch.bfloat16 | |
) | |
if config.tie_word_embeddings: | |
self.lm_head.weight.data = self.embed_tokens.weight.data | |
def forward(self, input_ids, positions): | |
hidden_states = self.embed_tokens(input_ids) | |
residual = None | |
for layer in self.layers: | |
hidden_states, residual = layer(positions, hidden_states, residual) | |
hidden_states, _ = self.norm(hidden_states, residual) | |
return self.lm_head(hidden_states) | |
def load_model(model: nn.Module, path: str, config: Qwen3Config): | |
from glob import glob | |
from safetensors import safe_open | |
name_map = model.packed_modules_mapping | |
q_size = config.head_dim * config.num_attention_heads | |
kv_size = config.head_dim * config.num_key_value_heads | |
qkv_slices = { | |
"q": slice(0, q_size), | |
"k": slice(q_size, q_size + kv_size), | |
"v": slice(q_size + kv_size, None), | |
} | |
mlp_slices = { | |
0: slice(0, config.intermediate_size), | |
1: slice(config.intermediate_size, None), | |
} | |
for file in glob(os.path.join(path, "*.safetensors")): | |
with safe_open(file, "pt", "cpu") as f: | |
for weight_name in f.keys(): | |
loaded_tensor = f.get_tensor(weight_name) | |
weight_name = weight_name.replace("model.", "") | |
for part_name, (packed_name, shard_id) in name_map.items(): | |
if part_name in weight_name: | |
param_name = weight_name.replace(part_name, packed_name) | |
param = model.get_parameter(param_name) | |
slice_map = qkv_slices if "qkv" in packed_name else mlp_slices | |
param.data[slice_map[shard_id], :] = loaded_tensor | |
break | |
else: | |
param = model.get_parameter(weight_name) | |
param.data.copy_(loaded_tensor) | |
def sample(logits, top_k, top_p, temperature): | |
logits = logits.float() | |
if temperature != 1.0: | |
logits = logits / temperature | |
if top_k > 0: | |
top_k_values, _ = torch.topk(logits, top_k) | |
kth_value = top_k_values[:, -1].unsqueeze(-1) | |
indices_to_remove = logits < kth_value | |
logits[indices_to_remove] = -float("Inf") | |
if top_p < 1.0: | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
indices_to_remove = sorted_indices_to_remove.scatter( | |
1, sorted_indices, sorted_indices_to_remove | |
) | |
logits[indices_to_remove] = -float("Inf") | |
probs = torch.softmax(logits, dim=-1) | |
next_token = torch.multinomial(probs, num_samples=1) | |
return next_token | |
path = os.path.expanduser( | |
"~/.cache/huggingface/hub/models--Qwen--Qwen3-0.6B/snapshots/e6de91484c29aa9480d55605af694f39b081c455/" | |
) | |
tokenizer = Qwen2TokenizerFast.from_pretrained(path) | |
config = Qwen3Config.from_pretrained(path) | |
# print(config) | |
model = Qwen3ForCausalLM(config) | |
load_model(model, path, config) | |
enable_thinking = False | |
prompt = tokenizer.apply_chat_template( | |
[{"role": "user", "content": "list all prime numbers within 100"}], | |
tokenize=False, | |
add_generation_prompt=True, | |
enable_thinking=enable_thinking, | |
) | |
# device = torch.device("mps") | |
device = torch.device("cpu") | |
model.to(device) | |
model.eval() | |
input_ids = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0).to(device) | |
generated_ids = input_ids | |
print(tokenizer.decode(input_ids[0].tolist()), end="", flush=True) | |
max_new_tokens = 256 | |
if enable_thinking: | |
temperature = 0.6 | |
top_p = 0.95 | |
else: | |
temperature = 0.7 | |
top_p = 0.8 | |
top_k = 20 | |
with torch.no_grad(): | |
for i in range(max_new_tokens): | |
seq_len = generated_ids.shape[1] | |
positions = torch.arange( | |
0 if i == 0 else seq_len - 1, seq_len, device=device | |
).unsqueeze(0) | |
current_input_ids = generated_ids if i == 0 else generated_ids[:, -1:] | |
logits = model(current_input_ids, positions)[:, -1, :] | |
next_token = sample(logits, top_k, top_p, temperature) | |
generated_ids = torch.cat([generated_ids, next_token], dim=1) | |
print(tokenizer.decode(next_token[0].tolist()), end="", flush=True) | |
if next_token.item() == tokenizer.eos_token_id: | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment