Last active
September 29, 2023 10:03
-
-
Save scamianbas/c4ebcd79722cdfb76215b45f42bc89ee to your computer and use it in GitHub Desktop.
python deBruijn sequence generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# translated from this : https://github.com/jgeisler0303/deBruijnDecode/blob/gh-pages/decodableDeBruijn.js | |
class DeBruijn: | |
def __init__(self, c, n): | |
self.c = c | |
self.n = n | |
self.a = [0] * (c * n) | |
self.s = [] | |
for j in range(c * n): | |
self.a[j] = 0 | |
self.generate(1, 1) | |
def generate(self, t, p): | |
if t > self.n: | |
if self.n % p == 0: | |
for j in range(p): | |
self.s.append(self.a[j+1]) | |
else: | |
self.a[t] = self.a[t-p] | |
self.generate(t+1, p) | |
for j in range(self.a[t-p]+1, self.c): | |
self.a[t] = j | |
self.generate(t+1, t) | |
def mod(n, m): | |
n = n % m | |
if n < 0: | |
n += m | |
return n | |
def gcd(a, b): | |
if a < 0: | |
a = -a | |
if b < 0: | |
b = -b | |
if b > a: | |
temp = a | |
a = b | |
b = temp | |
while True: | |
a %= b | |
if a == 0: | |
return b | |
b %= a | |
if b == 0: | |
return a | |
def sum(a): | |
s = 0 | |
for i in range(len(a)): | |
s += a[i] | |
return s | |
def diff(a): | |
s = [0] * (len(a) - 1) | |
for i in range(1, len(a)): | |
s[i-1] = a[i] - a[i-1] | |
return s | |
def cumsum(a): | |
for i in range(1, len(a)): | |
a[i] = a[i-1] + a[i] | |
return a | |
def wordIndex(w, c): | |
idx = 0 | |
b = 1 | |
for i in range(len(w)): | |
idx += b * w[i] | |
b *= c | |
return idx | |
def findWord(s, w): | |
k = None | |
n = len(w) | |
s_ = s + s[:n] | |
wi = 0 | |
k = 0 | |
while k < len(s) and wi != n : | |
k += 1 | |
wi = 0 | |
while wi < n and s_[k+wi]==w[wi] : | |
wi += 1 | |
if k >= len(s) : | |
k = -1 | |
return k | |
def findOnes(s, n): | |
w = [1] * n | |
return findWord(s, w) | |
def decodableDeBruijn(c, n): | |
def operator_D_inv(s, b, c): | |
w = sum(s) % c | |
if w != 0: | |
s_ = s | |
for i in range(c // gcd(c, w) - 1): | |
s = s + s_ | |
s = cumsum(s[:-1]) | |
s.insert(0, 0) | |
for i in range(len(s)): | |
s[i] = (s[i] + b) % c | |
return s | |
def rho(p, e, s): | |
s_ = s | |
s = s[:p] | |
e_ = [] | |
for i in range(e, e + c): | |
e_.append(i % c) | |
s = s + e_ | |
s = s + s_[p:] | |
return s | |
if n <= 2: | |
db = DeBruijn(c, 2) | |
t = db.s | |
t_ = t + t[:2] | |
for i in range(c ** 2): | |
T[wordIndex(t_[i:i+2], c)] = i | |
else: | |
n_ = n - 1 | |
s = decodableDeBruijn(c, n_) | |
k = findOnes(s, n_) | |
s_ = s[:k] + s[k+1:] | |
s_hat = operator_D_inv(s_, 0, c) | |
p = (c - 1) * (c ** n_ - 1) + k | |
e = s_hat[p] | |
t = rho(p, e, s_hat) | |
L[n-3] = t[:c ** n_ - 1] | |
K[n-2] = findOnes(t, n) | |
return t | |
def decodeDeBruijn(w, c): | |
def operator_D(w, c): | |
dw = [w[i+1] - w[i] for i in range(len(w)-1)] | |
dw = [x % c for x in dw] | |
return dw | |
r = 2 | |
n = len(w) | |
if n == r: | |
return T[wordIndex(w, c)] | |
v = operator_D(w, c) | |
i = n - r - 1 | |
k = K[n - r - 1] | |
p = (c - 1) * (c ** (n - 1) - 1) + k | |
allOnes = all(x == 1 for x in v) | |
if allOnes: | |
e = L[n - r - 1][k] + (c - 1) ** 2 | |
j = p + (w[0] - e) % c | |
else: | |
f = decodeDeBruijn(v, c) | |
if f > k: | |
f = f - 1 | |
e = L[n - r - 1][f] | |
j = f + (c ** (n - 1) - 1) * (e - w[0]) % c | |
if j < 0 or j > p - 1: | |
j = j + c | |
return j | |
c = 4 # alphabet size | |
n = 8 # word length | |
T = [0] * (c ** 2) | |
L = [0] * (n - 2) | |
K = [0] * (n - 1) | |
s = decodableDeBruijn(c, n) | |
print(s) | |
print(len(s)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment