Created
August 15, 2016 17:15
-
-
Save sbarratt/1853e173b97b5d6d993162707fe4fa0b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
"""CNN from https://www.microsoft.com/en-us/research/wp-content/uploads/2003/08/icdar03.pdf""" | |
from tensorflow.examples.tutorials.mnist import input_data | |
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) | |
import tensorflow as tf | |
def weight_variable(shape): | |
initial = tf.random_normal(shape, stddev=0.05) | |
return tf.Variable(initial) | |
def bias_variable(shape): | |
initial = tf.constant(0.1, shape=shape) | |
return tf.Variable(initial) | |
def conv2d(x, W): | |
return tf.nn.conv2d(x, W, strides=[1,2,2,1], padding='VALID') | |
x = tf.placeholder(tf.float32, [None, 28*28]) | |
y_ = tf.placeholder(tf.float32, [None, 10]) | |
_x = tf.reshape(x, [-1, 28, 28, 1]) | |
x_image = tf.image.resize_bilinear(_x, (29, 29)) | |
W_conv1 = weight_variable([5, 5, 1, 5]) | |
b_conv1 = bias_variable([5]) | |
h_1 = tf.nn.sigmoid( conv2d(x_image, W_conv1) + b_conv1 ) | |
W_conv2 = weight_variable([5, 5, 5, 50]) | |
b_conv2 = bias_variable([50]) | |
h_2 = tf.nn.sigmoid( conv2d(h_1, W_conv2) + b_conv2 ) | |
h_2_flattened = tf.reshape(h_2, [-1, 5*5*50]) | |
W_3 = tf.Variable(tf.random_normal([5*5*50, 100], stddev=.05)) | |
b_3 = tf.Variable(tf.random_normal([100], stddev=.05)) | |
h_3 = tf.nn.sigmoid( tf.matmul(h_2_flattened, W_3) + b_3 ) | |
W_4 = tf.Variable(tf.random_normal([100, 10], stddev=.05)) | |
b_4 = tf.Variable(tf.random_normal([10], stddev=.05)) | |
y = tf.nn.softmax( tf.matmul(h_3, W_4) + b_4 ) | |
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) | |
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
num_train_images = mnist.train.images.shape[0] | |
num_epochs = 1000 | |
minibatch_size = 10 | |
learning_rate = 0.005 | |
alpha = 0.3 | |
learning_rate_ = tf.placeholder(tf.float32, shape=[]) | |
train_step = tf.train.GradientDescentOptimizer(learning_rate_).minimize(cross_entropy) | |
assert num_train_images % minibatch_size == 0 | |
with tf.Session() as sess: | |
sess.run(tf.initialize_all_variables()) | |
for epoch in range(num_epochs): | |
for i in range(num_train_images // minibatch_size): | |
batch = mnist.train.next_batch(minibatch_size) | |
train_step.run(feed_dict={x: batch[0], y_: batch[1], learning_rate_: learning_rate}) | |
if epoch > 0 and epoch % 100 == 0: | |
learning_rate *= alpha | |
print ("epoch %d" % epoch) | |
validation_accuracy = accuracy.eval(feed_dict={x: mnist.validation.images, y_: mnist.validation.labels}) | |
print( "validation accuracy %g" % validation_accuracy) | |
test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) | |
print("test accuracy %g" % test_accuracy) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment