Skip to content

Instantly share code, notes, and snippets.

@sayakpaul
Created January 24, 2025 10:15
Show Gist options
  • Save sayakpaul/15cb0636fc829371a8991db56a13c377 to your computer and use it in GitHub Desktop.
Save sayakpaul/15cb0636fc829371a8991db56a13c377 to your computer and use it in GitHub Desktop.
Benchmarking Flux across different optimizations.
from diffusers import DiffusionPipeline
from diffusers import FluxTransformer2DModel, BitsAndBytesConfig
from transformers import T5EncoderModel, BitsAndBytesConfig as BnbConfig
from offloader import ModelOffloaderV2
import torch.utils.benchmark as benchmark
from pathlib import Path
import os
import sys
import torch
import json
import argparse
torch.cuda.memory.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_max_memory_cached()
torch.cuda.reset_peak_memory_stats()
prompt = "A whimsical and creative image depicting a hybrid creature that is a mix of a waffle and a hippopotamus, basking in a river of melted butter amidst a breakfast-themed landscape. It features the distinctive, bulky body shape of a hippo. However, instead of the usual grey skin, the creature’s body resembles a golden-brown, crispy waffle fresh off the griddle. The skin is textured with the familiar grid pattern of a waffle, each square filled with a glistening sheen of syrup. The environment combines the natural habitat of a hippo with elements of a breakfast table setting, a river of warm, melted butter, with oversized utensils or plates peeking out from the lush, pancake-like foliage in the background, a towering pepper mill standing in for a tree. As the sun rises in this fantastical world, it casts a warm, buttery glow over the scene. The creature, content in its butter river, lets out a yawn. Nearby, a flock of birds take flight"
def load_pipeline(args):
quantization_config_dit, quantization_config_t5 = None, None
if args.bit4_dit:
quantization_config_dit = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
transformer = FluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder="transformer", quantization_config=quantization_config_dit, torch_dtype=torch.bfloat16
)
if args.bit4_t5:
quantization_config_t5 = BnbConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16
)
text_encoder_2 = T5EncoderModel.from_pretrained(
"black-forest-labs/FLUX.1-dev", subfolder="text_encoder_2", quantization_config=quantization_config_t5, torch_dtype=torch.bfloat16
)
pipeline = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=transformer,
text_encoder_2=text_encoder_2,
torch_dtype=torch.bfloat16,
)
if args.layerwise_upcasting:
pipeline.transformer.enable_layerwise_casting(
storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16
)
if args.direct_cuda:
pipeline = pipeline.to("cuda")
elif args.cpu_offload:
pipeline.enable_model_cpu_offload()
elif args.slow_offload:
pipeline.enable_sequential_cpu_offload()
elif args.advanced_offload:
if args.bit4_dit:
pipeline.transformer = pipeline.transformer.to("cpu")
if args.bit4_t5:
pipeline.text_encoder_2 = pipeline.text_encoder_2.to("cpu")
ModelOffloaderV2(pipeline.text_encoder_2, record_stream=True).cuda() # T5
ModelOffloaderV2(pipeline.transformer, record_stream=True).cuda()
pipeline.text_encoder.cuda() # CLIP
pipeline.vae.cuda()
return pipeline
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=torch.get_num_threads(),
)
return f"{(t0.blocked_autorange().mean):.3f}"
def run_inference(pipeline):
image = pipeline(
prompt=prompt,
guidance_scale=3.5,
num_inference_steps=28,
max_sequence_length=512,
generator=torch.manual_seed(0)
).images[0]
return image
def parse_args():
parser = argparse.ArgumentParser()
# Use 0 or 1 for booleans
parser.add_argument(
"--bit4_dit",
type=int,
choices=[0, 1],
default=0,
help="Enable 4-bit quantization for DIT model (0 = False, 1 = True)."
)
parser.add_argument(
"--bit4_t5",
type=int,
choices=[0, 1],
default=0,
help="Enable 4-bit quantization for T5 model (0 = False, 1 = True)."
)
parser.add_argument(
"--layerwise_upcasting",
type=int,
choices=[0, 1],
default=0,
help="Enable layerwise upcasting (0 = False, 1 = True)."
)
parser.add_argument(
"--direct_cuda",
type=int,
choices=[0, 1],
default=1,
help="Move the pipeline directly to CUDA (0 = False, 1 = True)."
)
parser.add_argument(
"--cpu_offload",
type=int,
choices=[0, 1],
default=0,
help="Enable CPU offload (0 = False, 1 = True)."
)
parser.add_argument(
"--slow_offload",
type=int,
choices=[0, 1],
default=0,
help="Enable sequential CPU offload (0 = False, 1 = True)."
)
parser.add_argument(
"--advanced_offload",
type=int,
choices=[0, 1],
default=0,
help="Enable advanced offload (0 = False, 1 = True)."
)
args = parser.parse_args()
if args.cpu_offload and args.slow_offload and args.advanced_offload:
raise ValueError("All offloading schemes cannot be True.")
if args.direct_cuda and (args.cpu_offload or args.slow_offload or args.advanced_offload):
if not (args.bit4_dit or args.bit4_t5):
raise ValueError("CUDA placement cannot be enabled with offloading.")
if not (args.cpu_offload or args.slow_offload or args.advanced_offload) and not args.direct_cuda:
raise ValueError("At least one offloading strategy or CUDA placement need to be specified.")
return args
def create_image_filename(args):
filename_parts = [
"flux", # Base identifier or model name
f"dit4bit@{args.bit4_dit}",
f"t54bit@{args.bit4_t5}",
f"layerwise@{args.layerwise_upcasting}",
f"directCuda@{args.direct_cuda}",
f"cpuOffload@{args.cpu_offload}",
f"slowOffload@{args.slow_offload}",
f"advOffload@{args.advanced_offload}"
]
filename = "_".join(filename_parts) + ".png"
return filename
def main(args):
print(f"Running with {args=}")
image_filename = create_image_filename(args)
if os.path.exists(image_filename):
print("Configuration already executed. Exiting.")
sys.exit(0)
pipeline = load_pipeline(args)
image = run_inference(pipeline)
time = benchmark_fn(run_inference, pipeline)
image.save(image_filename)
max_memory = torch.cuda.max_memory_allocated() / (1024**3)
json_dict = vars(args)
json_dict.update({"memory": round(max_memory, 3), "time": time})
json_path = Path(image_filename).with_suffix(".json")
with open(json_path, "w") as f:
json.dump(json_dict, f)
if __name__ == "__main__":
args = parse_args()
main(args)
@sayakpaul
Copy link
Author

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment