Created
July 21, 2018 17:30
-
-
Save sarath-soman/2b03c82365baf597036fe58eb796fe8e to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package kjug; | |
import java.util.ArrayList; | |
import java.util.Arrays; | |
import java.util.List; | |
import java.util.stream.Collectors; | |
import java.util.stream.DoubleStream; | |
import java.util.stream.IntStream; | |
/** | |
* Implementation of Linear Regression learning algorithm | |
* @author Sarath Soman | |
*/ | |
public class LinearRegression { | |
public List<Double> train(List<List<Double>> X, List<Double> y, double learningRate) { | |
if(X.size() != y.size()) { | |
throw new RuntimeException("IDV - DV size mismatch"); | |
} | |
for(int i = 0; i < X.size(); i++) { | |
List<Double> xi = new ArrayList<>(X.get(i)); | |
xi.add(1.0); | |
X.set(i, xi); | |
} | |
int noOfIdv = X.get(0).size(); | |
List<Double> thetas = IntStream.range(0, noOfIdv) | |
.mapToObj(theta -> 0.0) | |
.collect(Collectors.toList()); | |
List<Double> thetasTemp = new ArrayList<>(thetas); | |
for(int i = 0; i < 100000; i++) { | |
for (int j = 0; j < noOfIdv; j++) { | |
double tempTheta = thetasTemp.get(j) - learningRate * differentiateCostFunction(thetasTemp, X, y, j); | |
thetas.set(j, tempTheta); | |
} | |
thetasTemp = new ArrayList<>(thetas); | |
} | |
return thetas; | |
} | |
private double differentiateCostFunction(List<Double> thetas, List<List<Double>> X, List<Double> y, int index) { | |
int m = X.size(); | |
return IntStream.range(0, m) | |
.mapToDouble(i -> (computeHTheta(thetas, X, i) - y.get(i)) * X.get(i).get(index)) | |
.sum() / m; | |
} | |
private double computeHTheta(List<Double> thetas, List<List<Double>> X, int index) { | |
int noOfIdv = X.get(0).size(); | |
return IntStream.range(0, noOfIdv) | |
.mapToDouble(i -> thetas.get(i) * X.get(index).get(i)) | |
.sum(); | |
} | |
public static void main(String[] args) { | |
LinearRegression regression = new LinearRegression(); | |
//y = x + 2 | |
List<List<Double>> X = Arrays.asList(Arrays.asList(1.0), Arrays.asList(2.0), Arrays.asList(3.0), | |
Arrays.asList(4.0), Arrays.asList(5.0), Arrays.asList(6.0), | |
Arrays.asList(7.0), Arrays.asList(8.0), Arrays.asList(9.0), | |
Arrays.asList(10.0), Arrays.asList(11.0)); | |
List<Double> y = Arrays.asList(3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); | |
List<Double> thetas = regression.train(X, y, 0.001); | |
thetas.stream() | |
.forEach(System.out::println); | |
} | |
public static class CostCalculator { | |
public double estimateCost(List<Double> thetas, List<List<Double>> X, List<Double> y) { | |
LinearRegression regression = new LinearRegression(); | |
int m = X.size(); | |
return IntStream.range(0, m) | |
.mapToDouble(i -> (regression.computeHTheta(thetas, X, i) - y.get(i))) | |
.map(x -> Math.pow(x, 2)) | |
.sum() / (2 * m); | |
} | |
public static void main(String[] args) { | |
CostCalculator costCalculator = new CostCalculator(); | |
List<List<Double>> X = Arrays.asList(Arrays.asList(1.0), Arrays.asList(2.0), Arrays.asList(3.0), | |
Arrays.asList(4.0), Arrays.asList(5.0), Arrays.asList(6.0), | |
Arrays.asList(7.0), Arrays.asList(8.0), Arrays.asList(9.0), | |
Arrays.asList(10.0), Arrays.asList(11.0)); | |
List<Double> y = Arrays.asList(3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0); | |
DoubleStream.of(-6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8) | |
.map(theta -> costCalculator.estimateCost(Arrays.asList(theta, 2.0), X, y)) | |
.forEach(System.out::println); | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment