-
-
Save sainb/2599d36e9dd358a730226f35cd7471ff to your computer and use it in GitHub Desktop.
XGBoost hyper parameter optimization using bayes_opt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from bayes_opt import BayesianOptimization | |
from sklearn.cross_validation import KFold | |
import xgboost as xgb | |
def xgbCv(train, features, numRounds, eta, gamma, maxDepth, minChildWeight, subsample, colSample): | |
# prepare xgb parameters | |
params = { | |
"objective": "reg:linear", | |
"booster" : "gbtree", | |
"eval_metric": "mae", | |
"tree_method": 'auto', | |
"silent": 1, | |
"eta": eta, | |
"max_depth": int(maxDepth), | |
"min_child_weight" : minChildWeight, | |
"subsample": subsample, | |
"colsample_bytree": colSample, | |
"gamma": gamma | |
} | |
cvScore = kFoldValidation(train, features, params, int(numRounds), nFolds = 3) | |
print('CV score: {:.6f}'.format(cvScore)) | |
return -1.0 * cvScore # invert the cv score to let bayopt maximize | |
def bayesOpt(train, features): | |
ranges = { | |
'numRounds': (1000, 5000), | |
'eta': (0.001, 0.3), | |
'gamma': (0, 25), | |
'maxDepth': (1, 10), | |
'minChildWeight': (0, 10), | |
'subsample': (0, 1), | |
'colSample': (0, 1) | |
} | |
# proxy through a lambda to be able to pass train and features | |
optFunc = lambda numRounds, eta, gamma, maxDepth, minChildWeight, subsample, colSample: xgbCv(train, features, numRounds, eta, gamma, maxDepth, minChildWeight, subsample, colSample) | |
bo = BayesianOptimization(optFunc, ranges) | |
bo.maximize(init_points = 50, n_iter = 5, kappa = 2, acq = "ei", xi = 0.0) | |
bestMAE = round((-1.0 * bo.res['max']['max_val']), 6) | |
print("\n Best MAE found: %f" % bestMAE) | |
print("\n Parameters: %s" % bo.res['max']['max_params']) | |
def kFoldValidation(train, features, xgbParams, numRounds, nFolds, target='loss'): | |
kf = KFold(len(train), n_folds = nFolds, shuffle = True) | |
fold_score=[] | |
for train_index, cv_index in kf: | |
# split train/validation | |
X_train, X_valid = train[features].as_matrix()[train_index], train[features].as_matrix()[cv_index] | |
y_train, y_valid = (train[target].as_matrix()[train_index]), (train[target].as_matrix()[cv_index]) | |
dtrain = xgb.DMatrix(X_train, y_train) | |
dvalid = xgb.DMatrix(X_valid, y_valid) | |
watchlist = [(dtrain, 'train'), (dvalid, 'eval')] | |
gbm = xgb.train(xgbParams, dtrain, numRounds, evals = watchlist, early_stopping_rounds = 100) | |
score = gbm.best_score | |
fold_score.append(score) | |
return np.mean(fold_score) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment