Last active
July 15, 2020 18:54
-
-
Save rrealrangel/0c73890e8967967e0e17f5021ee825f3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
GENERAR FIGURAS DE LA EVOLUCIÓN DE CASOS DE COVID-19 EN MÉXICO. | |
Created on Fri May 22 10:53:26 2020 | |
@author: [email protected] | |
""" | |
from pathlib import Path | |
import datetime | |
import pandas as pd | |
from matplotlib import dates as mdates | |
from matplotlib import pyplot as plt | |
# %% Inputs | |
input_dir = 'C:/' # Directorio que contiene los archivos CSV de la base de datos de COVID-19. | |
input_files = sorted(list(Path(input_dir).glob(pattern='**/*.csv'))) | |
output_dir = 'C:/' # Directorio donde se guardarán las figuras en formato PNG. | |
dbcat = 'C:/' # Ruta completa del archivo Catalogos_0412.xlsx de la base de datos de COVID-19 | |
dbcat_municip = pd.read_excel( | |
io=dbcat, | |
sheet_name='Catálogo MUNICIPIOS', | |
index_col=[-1, 0] | |
) | |
dbcat_states = pd.read_excel( | |
io=dbcat, | |
sheet_name='Catálogo de ENTIDADES', | |
index_col=0 | |
) | |
month_num = { | |
1: 'enero', 2: 'febrero', 3: 'marzo', 4: 'abril', 5: 'mayo', 6: 'junio', | |
7: 'julio', 8: 'agosto', 9: 'septiembre', 10: 'octubre', 11: 'noviembre', | |
12: 'diciembre' | |
} | |
# %% Settings | |
aux_pos = {} | |
aux_posysos = {} | |
municipios = range(1, 6) | |
for munic_numb in municipios: | |
region = {'state_numb': 2, 'munic_numb': munic_numb} | |
region['state_name'] = dbcat_states.loc[ | |
region['state_numb'], 'ENTIDAD_FEDERATIVA' | |
].title() | |
region['munic_name'] = dbcat_municip.loc[ | |
(region['state_numb'], region['munic_numb']), 'MUNICIPIO' | |
].title() | |
# %% Get the data | |
file = input_files[-1] | |
# Datos | |
dayn = file.stem[4:6] | |
day = str(int(dayn)) | |
monthn = file.stem[2:4] | |
month = month_num[int(monthn)] | |
year = '20' + str(int(file.stem[:2])) | |
db = pd.read_csv(file, encoding='latin') | |
db.index = pd.to_datetime(db['FECHA_SINTOMAS']) | |
pos = db.loc[ | |
(db['ENTIDAD_RES'] == region['state_numb']) & | |
(db['MUNICIPIO_RES'] == region['munic_numb']) & | |
(db['RESULTADO'] == 1) # 1: Positivo | |
] | |
pos = pos.iloc[:, 0].groupby(by=pos.index).count() | |
pos.name = 'CASOS' | |
sos = db.loc[ | |
(db['ENTIDAD_RES'] == region['state_numb']) & | |
(db['MUNICIPIO_RES'] == region['munic_numb']) & | |
(db['RESULTADO'] == 3) # 3: Sospechoso | |
] | |
sos = sos.iloc[:, 0].groupby(by=sos.index).count() | |
sos.name = 'CASOS' | |
new_index = pd.date_range( | |
start=min(min(pos.index), min(sos.index)), | |
end=pd.to_datetime( | |
'-'.join([year, monthn, dayn]) | |
) | |
) | |
pos = pos.reindex(index=new_index).fillna(0) | |
sos = sos.reindex(index=new_index).fillna(0) | |
aux_pos[region['munic_name']] = pos | |
aux_posysos[region['munic_name']] = sos + pos | |
pos = pd.DataFrame(aux_pos) | |
posysos = pd.DataFrame(aux_posysos) | |
pos_ma = pos.rolling(window=5, center=True).mean().loc['2020-03-01':] | |
posysos_ma = posysos.rolling(window=5, center=True).mean().loc['2020-03-01':] | |
poblacion = { | |
'Ensenada': 466814, | |
'Mexicali': 936826, | |
'Tecate': 101079, | |
'Playas de Rosarito': 90668 | |
} | |
# %% Plot | |
plt.rcParams["figure.figsize"] = (3.9370, 5.9055) | |
fig, ax = plt.subplots(len(municipios), 1) | |
figure_title = ( | |
'COVID-19 en los municipios de\n' | |
'Baja California,\n' | |
'al {} de {} de {}'.format(day, month, year) | |
) | |
ax[0].set_title( | |
label=figure_title, | |
fontsize=14 | |
) | |
for m, munic in enumerate(pos_ma.columns): | |
ax[m].grid(b=True) | |
ax[m].set_axisbelow(True) | |
ax[m].text( | |
x=0.01, | |
y=0.8, | |
s=munic, | |
transform=ax[m].transAxes | |
) | |
# Casos confirmados. | |
x = pos_ma.loc[ | |
:dt.datetime(year=int(year), month=int(monthn), day=int(dayn)) - | |
dt.timedelta(days=14) | |
].index | |
y = pos_ma[munic].loc[ | |
:dt.datetime(year=int(year), month=int(monthn), day=int(dayn)) - | |
dt.timedelta(days=14) | |
] | |
ax[m].plot( | |
x, y, color=[239/255, 71/255, 111/255], lw=3, label='Confirmados', | |
zorder=3 | |
) | |
# Casos confirmados + casos sospechosos | |
x = posysos_ma.loc[ | |
:dt.datetime(year=int(year), month=int(monthn), day=int(dayn)) - | |
dt.timedelta(days=7) | |
].index | |
y = posysos_ma[munic].loc[ | |
:dt.datetime(year=int(year), month=int(monthn), day=int(dayn)) - | |
dt.timedelta(days=7) | |
] | |
ax[m].plot( | |
x, y, color=[255/255, 209/255, 102/255], lw=3, zorder=2, | |
label='Confirmados + sospechosos' | |
) | |
# Jornada Nacional de Sana Distancia. | |
jnsd_i = dt.datetime(year=2020, month=3, day=23) | |
jnsd_f = dt.datetime(year=2020, month=6, day=1) | |
ax[m].axvspan( | |
xmin=jnsd_i, xmax=jnsd_f, color='0.9', zorder=-1, | |
label='Jornada Nacional de Sana Distancia' | |
) | |
# Formato de los ejes. | |
ax[m].set_xlim( | |
dt.datetime(year=2020, month=3, day=1), | |
dt.datetime(year=int(year), month=int(monthn), day=int(dayn)) | |
) | |
myFmt = mdates.DateFormatter("%d-%m") | |
ax[m].xaxis.set_major_formatter(myFmt) | |
ax[m].xaxis.set_ticks( | |
pd.date_range( | |
start=dt.datetime( | |
year=2020, month=3, day=1 | |
), | |
end=dt.datetime( | |
year=int(year), month=int(monthn), day=int(dayn) | |
), | |
freq='MS' | |
) | |
) | |
ax[m].set_yticks([0, np.ceil(posysos_ma.max(axis=0)[munic])]) | |
ax[m].set_yticklabels([0, int(np.ceil(posysos_ma.max(axis=0)[munic]))]) | |
if m < 4: | |
ax[m].tick_params( | |
# axis='y', # changes apply to the x-axis | |
which='both', # both major and minor ticks are affected | |
bottom=False, # ticks along the bottom edge are off | |
top=False, # ticks along the top edge are off | |
left=True, | |
labelbottom=False, # labels along the bottom edge are off | |
labelleft=True) | |
else: | |
ax[m].tick_params( | |
# axis='x', # changes apply to the x-axis | |
which='both', # both major and minor ticks are affected | |
bottom=True, # ticks along the bottom edge are off | |
top=False, # ticks along the top edge are off | |
left=True, | |
labelbottom=True, # labels along the bottom edge are off | |
labelleft=True) | |
ax[m].set_xlabel('Fecha de inicio de síntomas (dd-mm)') | |
ax[2].set_ylabel('Nuevos casos diarios') | |
ax[m].legend(loc=(0.01, -1.44), frameon=False) | |
disclaimer = [ | |
'La información presentada se proporciona en las condiciones en que se ' | |
'encuentra, sin que se\nasumala obligación de ofrecer ningún tipo de ' | |
'garantía. El autor se limita a proporcionar la\ninformación en los ' | |
'términos más precisos posibles derivada de la base de COVID-19, ' | |
'publicada\npor la Dirección General de Epidemiología de la Secretaría de ' | |
'Salud, disponible en\n' | |
'https://www.gob.mx/salud/documentos/datos-abiertos-152127 y ' | |
'consultados el 14/07/20. Así\nmismo, el autor no será responsable de ' | |
'las posibles imprecisiones, errores u omisiones\ncontenidos en dicha ' | |
'base de datos, así como daños directos, indirectos o riesgos ' | |
'financieros\nasociados al uso de esta.' | |
] | |
for r, row in enumerate(disclaimer): | |
fig.text( | |
x=0.05, | |
y=-0.18 - (r * 0.015), | |
s=row, | |
ha='left', | |
fontdict=dict(size=5, color='gray'), | |
wrap=True | |
) | |
fig.savefig( | |
fname=output_dir + '/tendencias_{year}{month}{day}.png'.format( | |
year=year, | |
month=monthn, | |
day=dayn | |
), | |
dpi=400, | |
bbox_inches="tight" | |
) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment