Created
May 30, 2019 04:14
-
-
Save riverajefer/bef718ca0f23c2ab6eb0e3853eed1393 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// import * as tf from '@tensorflow/tfjs'; | |
// Solve for XOR | |
const LEARNING_RATE = 0.1; | |
const EPOCHS = 500; | |
// Define the training data | |
const xs = [ | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
], | |
[ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0 | |
] | |
]; | |
const ys = [1, 1, 1, 1, 0, 0, 0, 0, 0]; | |
// Instantiate the training tensors | |
let xTrain = tf.tensor2d(xs, [9, 51]); | |
let yTrain = tf.oneHot(tf.tensor1d(ys).toInt(), 2); | |
// Define the model. | |
const model = tf.sequential(); | |
// Set up the network layers | |
model.add(tf.layers.dense({ | |
units: 25, | |
activation: 'sigmoid', | |
inputShape: [51] | |
})); | |
model.add(tf.layers.dense({ | |
units: 2, | |
activation: 'softmax', | |
outputShape: [2] | |
})); | |
// Define the optimizer | |
const optimizer = tf.train.adam(LEARNING_RATE); | |
// Init the model | |
model.compile({ | |
optimizer: optimizer, | |
loss: 'categoricalCrossentropy', | |
metrics: ['accuracy'], | |
}); | |
console.log('Entrenando... '); | |
// Train the model | |
const history = model.fit(xTrain, yTrain, { | |
epochs: EPOCHS, | |
validationData: [xTrain, yTrain], | |
}).then(() => { | |
console.log('Fin entrenamiento ! '); | |
const vectorPrueba1 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
0, | |
1, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const vectorPruebaZero = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const vectorPruebaZero2 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const vectorPrueba1_2 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
1, | |
0, | |
0 | |
]; | |
const vectorPruebaZero3 = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const algo = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
1, | |
0, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const unoraro = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0, | |
0 | |
]; | |
const zeroRaro = [ | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
0, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
1, | |
0, | |
0, | |
0 | |
]; | |
// Try the model on a value | |
const input = tf.tensor2d(zeroRaro, [1, 51]); | |
const predictOut = model.predict(input); | |
const logits = Array.from(predictOut.dataSync()); | |
console.log('prediction: ', logits, 'SALIDA : ' + predictOut.argMax(-1).dataSync()[0]); | |
}); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment