Created
February 14, 2019 07:14
-
-
Save rexlow/b4ef40bbd8d0f52d9160e33bdfe6dd11 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| name: "Face-ResNet" | |
| layer { | |
| name: "data" | |
| type: "ImageData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TRAIN | |
| } | |
| transform_param { | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| scale: 0.0078125 | |
| mirror: true | |
| } | |
| image_data_param { | |
| source: "face_example/data/caisa_train.txt" | |
| batch_size: 256 | |
| shuffle: true | |
| } | |
| } | |
| layer { | |
| name: "data" | |
| type: "ImageData" | |
| top: "data" | |
| top: "label" | |
| include { | |
| phase: TEST | |
| } | |
| transform_param { | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| mean_value: 127.5 | |
| scale: 0.0078125 | |
| mirror: true | |
| } | |
| image_data_param { | |
| source: "face_example/data/caisa_val.txt" | |
| batch_size: 128 | |
| shuffle: true | |
| } | |
| } | |
| layer { | |
| name: "conv1a" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv1a" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| kernel_size: 3 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1a" | |
| type: "PReLU" | |
| bottom: "conv1a" | |
| top: "conv1a" | |
| } | |
| layer { | |
| name: "conv1b" | |
| type: "Convolution" | |
| bottom: "conv1a" | |
| top: "conv1b" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| kernel_size: 3 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu1b" | |
| type: "PReLU" | |
| bottom: "conv1b" | |
| top: "conv1b" | |
| } | |
| layer { | |
| name: "pool1b" | |
| type: "Pooling" | |
| bottom: "conv1b" | |
| top: "pool1b" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv2_1" | |
| type: "Convolution" | |
| bottom: "pool1b" | |
| top: "conv2_1" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2_1" | |
| type: "PReLU" | |
| bottom: "conv2_1" | |
| top: "conv2_1" | |
| } | |
| layer { | |
| name: "conv2_2" | |
| type: "Convolution" | |
| bottom: "conv2_1" | |
| top: "conv2_2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 64 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2_2" | |
| type: "PReLU" | |
| bottom: "conv2_2" | |
| top: "conv2_2" | |
| } | |
| layer { | |
| name: "res2_2" | |
| type: "Eltwise" | |
| bottom: "pool1b" | |
| bottom: "conv2_2" | |
| top: "res2_2" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv2" | |
| type: "Convolution" | |
| bottom: "res2_2" | |
| top: "conv2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| kernel_size: 3 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu2" | |
| type: "PReLU" | |
| bottom: "conv2" | |
| top: "conv2" | |
| } | |
| layer { | |
| name: "pool2" | |
| type: "Pooling" | |
| bottom: "conv2" | |
| top: "pool2" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv3_1" | |
| type: "Convolution" | |
| bottom: "pool2" | |
| top: "conv3_1" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_1" | |
| type: "PReLU" | |
| bottom: "conv3_1" | |
| top: "conv3_1" | |
| } | |
| layer { | |
| name: "conv3_2" | |
| type: "Convolution" | |
| bottom: "conv3_1" | |
| top: "conv3_2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_2" | |
| type: "PReLU" | |
| bottom: "conv3_2" | |
| top: "conv3_2" | |
| } | |
| layer { | |
| name: "res3_2" | |
| type: "Eltwise" | |
| bottom: "pool2" | |
| bottom: "conv3_2" | |
| top: "res3_2" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv3_3" | |
| type: "Convolution" | |
| bottom: "res3_2" | |
| top: "conv3_3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_3" | |
| type: "PReLU" | |
| bottom: "conv3_3" | |
| top: "conv3_3" | |
| } | |
| layer { | |
| name: "conv3_4" | |
| type: "Convolution" | |
| bottom: "conv3_3" | |
| top: "conv3_4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 128 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3_4" | |
| type: "PReLU" | |
| bottom: "conv3_4" | |
| top: "conv3_4" | |
| } | |
| layer { | |
| name: "res3_4" | |
| type: "Eltwise" | |
| bottom: "res3_2" | |
| bottom: "conv3_4" | |
| top: "res3_4" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv3" | |
| type: "Convolution" | |
| bottom: "res3_4" | |
| top: "conv3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu3" | |
| type: "PReLU" | |
| bottom: "conv3" | |
| top: "conv3" | |
| } | |
| layer { | |
| name: "pool3" | |
| type: "Pooling" | |
| bottom: "conv3" | |
| top: "pool3" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv4_1" | |
| type: "Convolution" | |
| bottom: "pool3" | |
| top: "conv4_1" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_1" | |
| type: "PReLU" | |
| bottom: "conv4_1" | |
| top: "conv4_1" | |
| } | |
| layer { | |
| name: "conv4_2" | |
| type: "Convolution" | |
| bottom: "conv4_1" | |
| top: "conv4_2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_2" | |
| type: "PReLU" | |
| bottom: "conv4_2" | |
| top: "conv4_2" | |
| } | |
| layer { | |
| name: "res4_2" | |
| type: "Eltwise" | |
| bottom: "pool3" | |
| bottom: "conv4_2" | |
| top: "res4_2" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv4_3" | |
| type: "Convolution" | |
| bottom: "res4_2" | |
| top: "conv4_3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_3" | |
| type: "PReLU" | |
| bottom: "conv4_3" | |
| top: "conv4_3" | |
| } | |
| layer { | |
| name: "conv4_4" | |
| type: "Convolution" | |
| bottom: "conv4_3" | |
| top: "conv4_4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_4" | |
| type: "PReLU" | |
| bottom: "conv4_4" | |
| top: "conv4_4" | |
| } | |
| layer { | |
| name: "res4_4" | |
| type: "Eltwise" | |
| bottom: "res4_2" | |
| bottom: "conv4_4" | |
| top: "res4_4" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv4_5" | |
| type: "Convolution" | |
| bottom: "res4_4" | |
| top: "conv4_5" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_5" | |
| type: "PReLU" | |
| bottom: "conv4_5" | |
| top: "conv4_5" | |
| } | |
| layer { | |
| name: "conv4_6" | |
| type: "Convolution" | |
| bottom: "conv4_5" | |
| top: "conv4_6" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_6" | |
| type: "PReLU" | |
| bottom: "conv4_6" | |
| top: "conv4_6" | |
| } | |
| layer { | |
| name: "res4_6" | |
| type: "Eltwise" | |
| bottom: "res4_4" | |
| bottom: "conv4_6" | |
| top: "res4_6" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv4_7" | |
| type: "Convolution" | |
| bottom: "res4_6" | |
| top: "conv4_7" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_7" | |
| type: "PReLU" | |
| bottom: "conv4_7" | |
| top: "conv4_7" | |
| } | |
| layer { | |
| name: "conv4_8" | |
| type: "Convolution" | |
| bottom: "conv4_7" | |
| top: "conv4_8" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_8" | |
| type: "PReLU" | |
| bottom: "conv4_8" | |
| top: "conv4_8" | |
| } | |
| layer { | |
| name: "res4_8" | |
| type: "Eltwise" | |
| bottom: "res4_6" | |
| bottom: "conv4_8" | |
| top: "res4_8" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv4_9" | |
| type: "Convolution" | |
| bottom: "res4_8" | |
| top: "conv4_9" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_9" | |
| type: "PReLU" | |
| bottom: "conv4_9" | |
| top: "conv4_9" | |
| } | |
| layer { | |
| name: "conv4_10" | |
| type: "Convolution" | |
| bottom: "conv4_9" | |
| top: "conv4_10" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 256 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4_10" | |
| type: "PReLU" | |
| bottom: "conv4_10" | |
| top: "conv4_10" | |
| } | |
| layer { | |
| name: "res4_10" | |
| type: "Eltwise" | |
| bottom: "res4_8" | |
| bottom: "conv4_10" | |
| top: "res4_10" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv4" | |
| type: "Convolution" | |
| bottom: "res4_10" | |
| top: "conv4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu4" | |
| type: "PReLU" | |
| bottom: "conv4" | |
| top: "conv4" | |
| } | |
| layer { | |
| name: "pool4" | |
| type: "Pooling" | |
| bottom: "conv4" | |
| top: "pool4" | |
| pooling_param { | |
| pool: MAX | |
| kernel_size: 2 | |
| stride: 2 | |
| } | |
| } | |
| layer { | |
| name: "conv5_1" | |
| type: "Convolution" | |
| bottom: "pool4" | |
| top: "conv5_1" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_1" | |
| type: "PReLU" | |
| bottom: "conv5_1" | |
| top: "conv5_1" | |
| } | |
| layer { | |
| name: "conv5_2" | |
| type: "Convolution" | |
| bottom: "conv5_1" | |
| top: "conv5_2" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_2" | |
| type: "PReLU" | |
| bottom: "conv5_2" | |
| top: "conv5_2" | |
| } | |
| layer { | |
| name: "res5_2" | |
| type: "Eltwise" | |
| bottom: "pool4" | |
| bottom: "conv5_2" | |
| top: "res5_2" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv5_3" | |
| type: "Convolution" | |
| bottom: "res5_2" | |
| top: "conv5_3" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_3" | |
| type: "PReLU" | |
| bottom: "conv5_3" | |
| top: "conv5_3" | |
| } | |
| layer { | |
| name: "conv5_4" | |
| type: "Convolution" | |
| bottom: "conv5_3" | |
| top: "conv5_4" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_4" | |
| type: "PReLU" | |
| bottom: "conv5_4" | |
| top: "conv5_4" | |
| } | |
| layer { | |
| name: "res5_4" | |
| type: "Eltwise" | |
| bottom: "res5_2" | |
| bottom: "conv5_4" | |
| top: "res5_4" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "conv5_5" | |
| type: "Convolution" | |
| bottom: "res5_4" | |
| top: "conv5_5" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_5" | |
| type: "PReLU" | |
| bottom: "conv5_5" | |
| top: "conv5_5" | |
| } | |
| layer { | |
| name: "conv5_6" | |
| type: "Convolution" | |
| bottom: "conv5_5" | |
| top: "conv5_6" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 0 | |
| decay_mult: 0 | |
| } | |
| convolution_param { | |
| num_output: 512 | |
| kernel_size: 3 | |
| stride: 1 | |
| pad: 1 | |
| weight_filler { | |
| type: "gaussian" | |
| std: 0.01 | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "relu5_6" | |
| type: "PReLU" | |
| bottom: "conv5_6" | |
| top: "conv5_6" | |
| } | |
| layer { | |
| name: "res5_6" | |
| type: "Eltwise" | |
| bottom: "res5_4" | |
| bottom: "conv5_6" | |
| top: "res5_6" | |
| eltwise_param { | |
| operation: 1 | |
| } | |
| } | |
| layer { | |
| name: "fc5" | |
| type: "InnerProduct" | |
| bottom: "res5_6" | |
| top: "fc5" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| inner_product_param { | |
| num_output: 512 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| ############## softmax loss ############### | |
| layer { | |
| name: "fc6" | |
| type: "InnerProduct" | |
| bottom: "fc5" | |
| top: "fc6" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 1 | |
| } | |
| param { | |
| lr_mult: 2 | |
| decay_mult: 0 | |
| } | |
| inner_product_param { | |
| num_output: 10572 | |
| weight_filler { | |
| type: "xavier" | |
| } | |
| bias_filler { | |
| type: "constant" | |
| value: 0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "softmax_loss" | |
| type: "SoftmaxWithLoss" | |
| bottom: "fc6" | |
| bottom: "label" | |
| top: "softmax_loss" | |
| } | |
| ############## center loss ############### | |
| layer { | |
| name: "center_loss" | |
| type: "CenterLoss" | |
| bottom: "fc5" | |
| bottom: "label" | |
| top: "center_loss" | |
| param { | |
| lr_mult: 1 | |
| decay_mult: 2 | |
| } | |
| center_loss_param { | |
| num_output: 10572 | |
| center_filler { | |
| type: "xavier" | |
| } | |
| } | |
| loss_weight: 0.008 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment