Created
January 23, 2025 13:02
-
-
Save remisarrailh/c9cab0814889240f41a0ee7d29852b5d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import rp | |
# from rp import * | |
import torch | |
import numpy as np | |
import einops | |
from diffusers import CogVideoXImageToVideoPipeline | |
from diffusers import CogVideoXVideoToVideoPipeline | |
from diffusers import CogVideoXPipeline | |
from diffusers.utils import export_to_video, load_image | |
from icecream import ic | |
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel | |
from transformers import T5EncoderModel | |
import rp.git.CommonSource.noise_warp as nw | |
pipe_ids = dict( | |
T2V5B="THUDM/CogVideoX-5b", | |
T2V2B="THUDM/CogVideoX-2b", | |
I2V5B="THUDM/CogVideoX-5b-I2V", | |
) | |
# From a bird's-eye view, a serene scene unfolds: a herd of deer gracefully navigates shallow, warm-hued waters, their silhouettes stark against the earthy tones. The deer, spread across the frame, cast elongated, well-defined shadows that accentuate their antlers, creating a mesmerizing play of light and dark. This aerial perspective captures the tranquil essence of the setting, emphasizing the harmonious contrast between the deer and their mirror-like reflections on the water's surface. The composition exudes a peaceful stillness, yet the subtle movement suggested by the shadows adds a dynamic layer to the natural beauty and symmetry of the moment. | |
base_url = 'https://huggingface.co/Eyeline-Research/Go-with-the-Flow' | |
lora_urls = dict( | |
I2V5B_final_i30000_lora_weights = base_url+'I2V5B_final_i30000_lora_weights.safetensors', | |
I2V5B_final_i38800_nearest_lora_weights = base_url+'I2V5B_final_i38800_nearest_lora_weights.safetensors', | |
I2V5B_resum_blendnorm_0degrad_i13600_DATASET_lora_weights = base_url+'I2V5B_resum_blendnorm_0degrad_i13600_DATASET_lora_weights.safetensors', | |
T2V2B_RDeg_i30000_lora_weights = base_url+'T2V2B_RDeg_i30000_lora_weights.safetensors', | |
T2V5B_blendnorm_i18000_DATASET_lora_weights = base_url+'T2V5B_blendnorm_i18000_DATASET_lora_weights.safetensors', | |
T2V5B_blendnorm_i25000_DATASET_nearest_lora_weights = base_url+'T2V5B_blendnorm_i25000_DATASET_nearest_lora_weights.safetensors', | |
) | |
dtype=torch.bfloat16 | |
#https://medium.com/@ChatGLM/open-sourcing-cogvideox-a-step-towards-revolutionizing-video-generation-28fa4812699d | |
B, F, C, H, W = 1, 13, 16, 60, 90 # The defaults | |
num_frames=(F-1)*4+1 #https://miro.medium.com/v2/resize:fit:1400/format:webp/0*zxsAG1xks9pFIsoM | |
#Possible num_frames: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49 | |
assert num_frames==49 | |
@rp.memoized #Torch never manages to unload it from memory anyway | |
def get_pipe(model_name, device=None, low_vram=True): | |
""" | |
model_name is like "I2V5B", "T2V2B", or "T2V5B", or a LoRA name like "T2V2B_RDeg_i30000_lora_weights" | |
device is automatically selected if unspecified | |
low_vram, if True, will make the pipeline use CPU offloading | |
""" | |
if model_name in pipe_ids: | |
lora_name = None | |
pipe_name = model_name | |
else: | |
#By convention, we have lora_paths that start with the pipe names | |
rp.fansi_print(f"Getting pipe name from model_name={model_name}",'cyan','bold') | |
lora_name = model_name | |
pipe_name = lora_name.split('_')[0] | |
is_i2v = "I2V" in pipe_name # This is a convention I'm using right now | |
# is_v2v = "V2V" in pipe_name # This is a convention I'm using right now | |
# if is_v2v: | |
# old_pipe_name = pipe_name | |
# old_lora_name = lora_name | |
# if pipe_name is not None: pipe_name = pipe_name.replace('V2V','T2V') | |
# if lora_name is not None: lora_name = lora_name.replace('V2V','T2V') | |
# rp.fansi_print(f"V2V: {old_pipe_name} --> {pipe_name} &&& {old_lora_name} --> {lora_name}",'white','bold italic','red') | |
pipe_id = pipe_ids[pipe_name] | |
print(f"LOADING PIPE WITH device={device} pipe_name={pipe_name} pipe_id={pipe_id} lora_name={lora_name}" ) | |
hub_model_id = pipe_ids[pipe_name] | |
transformer = CogVideoXTransformer3DModel.from_pretrained(hub_model_id, subfolder="transformer", torch_dtype=torch.bfloat16) | |
text_encoder = T5EncoderModel.from_pretrained(hub_model_id, subfolder="text_encoder", torch_dtype=torch.bfloat16) | |
vae = AutoencoderKLCogVideoX.from_pretrained(hub_model_id, subfolder="vae", torch_dtype=torch.bfloat16) | |
PipeClass = CogVideoXImageToVideoPipeline if is_i2v else CogVideoXPipeline | |
pipe = PipeClass.from_pretrained(hub_model_id, torch_dtype=torch.bfloat16, vae=vae,transformer=transformer,text_encoder=text_encoder) | |
if lora_name is not None: | |
lora_folder = rp.make_directory('lora_models') | |
lora_url = lora_urls[lora_name] | |
lora_path = rp.download_url(lora_url, lora_folder, show_progress=True, skip_existing=True) | |
assert rp.file_exists(lora_path), (lora_name, lora_path) | |
print(end="\tLOADING LORA WEIGHTS...",flush=True) | |
pipe.load_lora_weights(lora_path) | |
print("DONE!") | |
if device is None: | |
device = rp.select_torch_device() | |
if not low_vram: | |
print("\tUSING PIPE DEVICE", device) | |
pipe = pipe.to(device) | |
else: | |
print("\tUSING PIPE DEVICE WITH CPU OFFLOADING", device) | |
pipe = pipe.to('cpu') | |
pipe.enable_sequential_cpu_offload(device=device) | |
pipe.vae.enable_tiling() | |
pipe.vae.enable_slicing() | |
pipe.transformer.enable_gradient_checkpointing() | |
pipe.text_encoder._set_gradient_checkpointing(pipe.text_encoder.encoder, True) | |
# Metadata | |
pipe.lora_name = lora_name | |
pipe.pipe_name = pipe_name | |
pipe.is_i2v = is_i2v | |
# pipe.is_v2v = is_v2v | |
return pipe | |
def get_downtemp_noise(noise, noise_downtemp_interp): | |
assert noise_downtemp_interp in {'nearest', 'blend', 'blend_norm', 'randn'}, noise_downtemp_interp | |
if noise_downtemp_interp == 'nearest' : return rp.resize_list(noise, 13) | |
elif noise_downtemp_interp == 'blend' : return downsamp_mean(noise, 13) | |
elif noise_downtemp_interp == 'blend_norm' : return normalized_noises(downsamp_mean(noise, 13)) | |
elif noise_downtemp_interp == 'randn' : return torch.randn_like(rp.resize_list(noise, 13)) #Basically no warped noise, just r | |
else: assert False, 'impossible' | |
def downsamp_mean(x, l=13): | |
return torch.stack([rp.mean(u) for u in rp.split_into_n_sublists(x, l)]) | |
def normalized_noises(noises): | |
#Noises is in TCHW form | |
return torch.stack([x / x.std(1, keepdim=True) for x in noises]) | |
@rp.memoized | |
def load_sample_cartridge( | |
sample_path: str, | |
degradation=0, | |
noise_downtemp_interp='nearest', | |
image=None, | |
prompt=None, | |
#SETTINGS: | |
num_inference_steps=30, | |
guidance_scale=6, | |
): | |
""" | |
COMPLETELY FROM SAMPLE: Generate with /root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidSampleGenerator.ipynb | |
EXAMPLE PATHS: | |
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/plus_pug.pkl' | |
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/amuse_chop.pkl' | |
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/chomp_shop.pkl' | |
sample_path = '/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/ahead_job.pkl' | |
sample_path = rp.random_element(glob.glob('/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/*.pkl')) | |
""" | |
#These could be args in the future. I can't think of a use case yet though, so I'll keep the signature clean. | |
noise=None | |
video=None | |
if rp.is_a_folder(sample_path): | |
#Was generated using the flow pipeline | |
print(end="LOADING CARTRIDGE FOLDER "+sample_path+"...") | |
noise_file=rp.path_join(sample_path,'noises.npy') | |
instance_noise = np.load(noise_file) | |
instance_noise = torch.tensor(instance_noise) | |
instance_noise = einops.rearrange(instance_noise, 'F H W C -> F C H W') | |
video_file=rp.path_join(sample_path,'input.mp4') | |
instance_video = rp.load_video(video_file) | |
instance_video = rp.as_torch_images(instance_video) | |
instance_video = instance_video * 2 - 1 | |
sample = rp.as_easydict( | |
instance_prompt = '', #Please have some prompt to override this! Ideally the defualt would come from a VLM | |
instance_noise = instance_noise, | |
instance_video = instance_video, | |
) | |
print("DONE!") | |
else: | |
#Was generated using the Cut-And-Drag GUI | |
print(end="LOADING CARTRIDGE FILE "+sample_path+"...") | |
sample=rp.file_to_object(sample_path) | |
print("DONE!") | |
#SAMPLE EXAMPLE: | |
# >>> sample=file_to_object('/root/micromamba/envs/i2sb/lib/python3.8/site-packages/rp/git/CommonSource/notebooks/CogVidX_Saved_Train_Samples/ahead_job.pkl') | |
# >>> list(sample)?s --> ['instance_prompt', 'instance_video', 'instance_noise'] | |
# >>> sample.instance_prompt?s --> A group of elk, including a dominant bull, is seen grazing and moving through... | |
# >>> sample.instance_noise.shape?s --> torch.Size([49, 16, 60, 90]) | |
# >>> sample.instance_video.shape?s --> torch.Size([49, 3, 480, 720]) # Range: [-1, 1] | |
sample_noise = sample["instance_noise" ].to(dtype) | |
sample_video = sample["instance_video" ].to(dtype) | |
sample_prompt = sample["instance_prompt"] | |
sample_gif_path = sample_path+'.mp4' | |
if not rp.file_exists(sample_gif_path): | |
sample_gif_path = sample_path+'.gif' #The older scripts made this. Backwards compatibility. | |
if not rp.file_exists(sample_gif_path): | |
#Create one! | |
#Clientside warped noise does not come with a nice GIF so we make one here and now! | |
sample_gif_path = sample_path+'.mp4' | |
rp.fansi_print("MAKING SAMPLE PREVIEW VIDEO",'light blue green','underlined') | |
preview_sample_video=rp.as_numpy_images(sample_video)/2+.5 | |
preview_sample_noise=rp.as_numpy_images(sample_noise)[:,:,:,:3]/5+.5 | |
preview_sample_noise = rp.resize_images(preview_sample_noise, size=8, interp="nearest") | |
preview_sample=rp.horizontally_concatenated_videos(preview_sample_video,preview_sample_noise) | |
rp.save_video_mp4(preview_sample,sample_gif_path,video_bitrate='max',framerate=12) | |
rp.fansi_print("DONE MAKING SAMPLE PREVIEW VIDEO!",'light blue green','underlined') | |
#prompt=sample.instance_prompt | |
downtemp_noise = get_downtemp_noise( | |
sample_noise, | |
noise_downtemp_interp=noise_downtemp_interp, | |
) | |
downtemp_noise = downtemp_noise[None] | |
downtemp_noise = nw.mix_new_noise(downtemp_noise, degradation) | |
assert downtemp_noise.shape == (B, F, C, H, W), (downtemp_noise.shape,(B, F, C, H, W)) | |
if image is None : sample_image = rp.as_pil_image(rp.as_numpy_image(sample_video[0].float()/2+.5)) | |
elif isinstance(image, str) : sample_image = rp.as_pil_image(rp.as_rgb_image(rp.load_image(image))) | |
else : sample_image = rp.as_pil_image(rp.as_rgb_image(image)) | |
metadata = rp.gather_vars('sample_path degradation downtemp_noise sample_gif_path sample_video sample_noise noise_downtemp_interp') | |
settings = rp.gather_vars('num_inference_steps guidance_scale'+0*'v2v_strength') | |
if noise is None: noise = downtemp_noise | |
if video is None: video = sample_video | |
if image is None: image = sample_image | |
if prompt is None: prompt = sample_prompt | |
assert noise.shape == (B, F, C, H, W), (noise.shape,(B, F, C, H, W)) | |
return rp.gather_vars('prompt noise image video metadata settings') | |
def dict_to_name(d=None, **kwargs): | |
""" | |
Used to generate MP4 file names | |
EXAMPLE: | |
>>> dict_to_name(dict(a=5,b='hello',c=None)) | |
ans = a=5,b=hello,c=None | |
>>> name_to_dict(ans) | |
ans = {'a': '5', 'b': 'hello', 'c': 'None'} | |
""" | |
if d is None: | |
d = {} | |
d.update(kwargs) | |
return ",".join("=".join(map(str, [key, value])) for key, value in d.items()) | |
# def name_to_dict(nam" | |
# Useful for analyzing output MP4 files | |
# | |
# EXAMPLE: | |
# >>> dict_to_name(dict(a=5,b='hello',c=None)) | |
# ans = a=5,b=hello,c=None | |
# >>> name_to_dict(ans) | |
# ans = {'a': '5', 'b': 'hello', 'c': 'None'} | |
# """ | |
# output=rp.as_easydict() | |
# for entry in name.split(','): | |
# key,value=entry.split('=',maxsplit=1) | |
# output[key]=value | |
# return output | |
# | |
# | |
def get_output_path(pipe, cartridge, subfolder:str, output_root:str): | |
""" | |
Generates a unique output path for saving a generated video. | |
Args: | |
pipe: The video generation pipeline used. | |
cartridge: Data used for generating the video. | |
subfolder (str): Subfolder for saving the video. | |
output_root (str): Root directory for output videos. | |
Returns: | |
String representing the unique path to save the video. | |
""" | |
time = rp.millis() | |
output_name = ( | |
dict_to_name( | |
t=time, | |
pipe=pipe.pipe_name, | |
lora=pipe.lora_name, | |
steps = cartridge.settings.num_inference_steps, | |
# strength = cartridge.settings.v2v_strength, | |
degrad = cartridge.metadata.degradation, | |
downtemp = cartridge.metadata.noise_downtemp_interp, | |
samp = rp.get_file_name(rp.get_parent_folder(cartridge.metadata.sample_path), False), | |
) | |
+ ".mp4" | |
) | |
output_path = rp.get_unique_copy_path( | |
rp.path_join( | |
rp.make_directory( | |
rp.path_join(output_root, subfolder), | |
), | |
output_name, | |
), | |
) | |
rp.fansi_print(f"OUTPUT PATH: {rp.fansi_highlight_path(output_path)}", "blue", "bold") | |
return output_path | |
def run_pipe( | |
pipe, | |
cartridge, | |
subfolder="first_subfolder", | |
output_root: str = "infer_outputs", | |
output_mp4_path = None, #This overrides subfolder and output_root if specified | |
): | |
# output_mp4_path = output_mp4_path or get_output_path(pipe, cartridge, subfolder, output_root) | |
if rp.file_exists(output_mp4_path): | |
raise RuntimeError("{output_mp4_path} already exists! Please choose a different output file or delete that one. This script is designed not to clobber previous results.") | |
if pipe.is_i2v: | |
image = cartridge.image | |
if isinstance(image, str): | |
image = rp.load_image(image,use_cache=True) | |
image = rp.as_pil_image(rp.as_rgb_image(image)) | |
# if pipe.is_v2v: | |
# print("Making v2v video...") | |
# v2v_video=cartridge.video | |
# v2v_video=rp.as_numpy_images(v2v_video) / 2 + .5 | |
# v2v_video=rp.as_pil_images(v2v_video) | |
print("NOISE SHAPE",cartridge.noise.shape) | |
print("IMAGE",image) | |
with torch.cuda.amp.autocast(): | |
video = pipe( | |
prompt=cartridge.prompt, | |
**(dict(image =image ) if pipe.is_i2v else {}), | |
# **(dict(strength=cartridge.settings.v2v_strength) if pipe.is_v2v else {}), | |
# **(dict(video =v2v_video ) if pipe.is_v2v else {}), | |
num_inference_steps=cartridge.settings.num_inference_steps, | |
latents=cartridge.noise, | |
guidance_scale=cartridge.settings.guidance_scale, | |
# generator=torch.Generator(device=device).manual_seed(42), | |
).frames[0] | |
export_to_video(video, output_mp4_path, fps=8) | |
sample_gif=rp.load_video(cartridge.metadata.sample_gif_path) | |
video=rp.as_numpy_images(video) | |
prevideo = rp.horizontally_concatenated_videos( | |
rp.resize_list(sample_gif, len(video)), | |
video, | |
origin='bottom right', | |
) | |
import textwrap | |
prevideo = rp.labeled_images( | |
prevideo, | |
position="top", | |
labels=cartridge.metadata.sample_path +"\n"+output_mp4_path +"\n\n" + rp.wrap_string_to_width(cartridge.prompt, 250), | |
size_by_lines=True, | |
text_color='light light light blue', | |
# font='G:Lexend' | |
) | |
preview_mp4_path = output_mp4_path + "_preview.mp4" | |
preview_gif_path = preview_mp4_path + ".gif" | |
print(end=f"Saving preview MP4 to preview_mp4_path = {preview_mp4_path}...") | |
rp.save_video_mp4(prevideo, preview_mp4_path, framerate=16, video_bitrate="max", show_progress=False) | |
compressed_preview_mp4_path = rp.save_video_mp4(prevideo, output_mp4_path + "_preview_compressed.mp4", framerate=16, show_progress=False) | |
print("done!") | |
print(end=f"Saving preview gif to preview_gif_path = {preview_gif_path}...") | |
rp.convert_to_gif_via_ffmpeg(preview_mp4_path, preview_gif_path, framerate=12,show_progress=False) | |
print("done!") | |
return rp.gather_vars('video output_mp4_path preview_mp4_path compressed_preview_mp4_path cartridge subfolder preview_mp4_path preview_gif_path') | |
# #prompt = "A little girl is riding a bicycle at high speed. Focused, detailed, realistic." | |
# prompt = "An old house by the lake with wooden plank siding and a thatched roof" | |
# prompt = "Soaring through deep space" | |
# prompt = "Swimming by the ruins of the titanic" | |
# prompt = "A camera flyby of a gigantic ice tower that a princess lives in, zooming in from far away from the castle into her dancing in the window" | |
# prompt = "A drone flyby of the grand canyon, aerial view" | |
# prompt = "A bunch of puppies running around a front lawn in a giant courtyard " | |
# #image = load_image(image=download_url_to_cache("https://media.sciencephoto.com/f0/22/69/89/f0226989-800px-wm.jpg")) | |
def main( | |
sample_path, | |
output_mp4_path:str, | |
prompt=None, | |
degradation=.5, | |
model_name='I2V5B_final_i38800_nearest_lora_weights', | |
low_vram=True, | |
device:str=None, | |
#BROADCASTABLE: | |
noise_downtemp_interp='nearest', | |
image=None, | |
num_inference_steps=30, | |
guidance_scale=6, | |
# v2v_strength=.5,#Timestep for when using Vid2Vid. Only set to not none when using a T2V model! | |
): | |
""" | |
Main function to run the video generation pipeline with specified parameters. | |
Args: | |
model_name (str): Name of the pipeline to use ('T2V5B', 'T2V2B', 'I2V5B', etc). | |
device (str or int, optional): Device to run the model on (e.g., 'cuda:0' or 0). If unspecified, the GPU with the most free VRAM will be chosen. | |
low_vram (bool): Set to True if you have less than 32GB of VRAM. In enables model cpu offloading, which slows down inference but needs much less vram. | |
sample_path (str or list, optional): Broadcastable. Path(s) to the sample `.pkl` file(s) or folders containing (noise.npy and input.mp4 files) | |
degradation (float or list): Broadcastable. Degradation level(s) for the noise warp (float between 0 and 1). | |
noise_downtemp_interp (str or list): Broadcastable. Interpolation method(s) for down-temporal noise. Options: 'nearest', 'blend', 'blend_norm'. | |
image (str, PIL.Image, or list, optional): Broadcastable. Image(s) to use as the initial frame(s). Can be a URL or a path to an image. | |
prompt (str or list, optional): Broadcastable. Text prompt(s) for video generation. | |
num_inference_steps (int or list): Broadcastable. Number of inference steps for the pipeline. | |
""" | |
output_root='infer_outputs', # output_root (str): Root directory where output videos will be saved. | |
subfolder='default_subfolder', # subfolder (str): Subfolder within output_root to save outputs. | |
if device is None: | |
device = rp.select_torch_device(reserve=True, prefer_used=True) | |
rp.fansi_print(f"Selected torch device: {device}") | |
import os | |
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True' | |
cartridge_kwargs = rp.broadcast_kwargs( | |
rp.gather_vars( | |
"sample_path", | |
"degradation", | |
"noise_downtemp_interp", | |
"image", | |
"prompt", | |
"num_inference_steps", | |
"guidance_scale", | |
# "v2v_strength", | |
) | |
) | |
rp.fansi_print("cartridge_kwargs:", "cyan", "bold") | |
print( | |
rp.indentify( | |
rp.with_line_numbers( | |
rp.fansi_pygments( | |
rp.autoformat_json(cartridge_kwargs), | |
"json", | |
), | |
align=True, | |
) | |
), | |
) | |
# cartridges = [load_sample_cartridge(**x) for x in cartridge_kwargs] | |
cartridges = rp.load_files(lambda x:load_sample_cartridge(**x), cartridge_kwargs, show_progress='eta:Loading Cartridges') | |
pipe = get_pipe(model_name, device, low_vram=True) | |
output=[] | |
for cartridge in cartridges: | |
pipe_out = run_pipe( | |
pipe=pipe, | |
cartridge=cartridge, | |
output_root=output_root, | |
subfolder=subfolder, | |
output_mp4_path=output_mp4_path, | |
) | |
output.append( | |
rp.as_easydict( | |
rp.gather( | |
pipe_out, | |
[ | |
"output_mp4_path", | |
"preview_mp4_path", | |
"compressed_preview_mp4_path", | |
"preview_mp4_path", | |
"preview_gif_path", | |
], | |
as_dict=True, | |
) | |
) | |
) | |
return output | |
if __name__ == '__main__': | |
import fire | |
fire.Fire(main) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment