Created
July 7, 2017 04:11
-
-
Save qfettes/d18adbf75f1266537efea43f71aaf8c4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#undiscounted, fast epsilon decay, constant alpha | |
import numpy as np | |
import scipy | |
import gym | |
from collections import defaultdict | |
from gym import wrappers | |
GAMMA = 1 | |
ALPHA = 0.1 | |
NUM_EPISODES = 50000 | |
EPSILON = 1.0 | |
EPSILON_DECAY = 0.99 | |
def random_action(a, env, eps=0.1): | |
p = np.random.random() | |
if p < (1 - eps): | |
return a | |
else: | |
return env.action_space.sample() | |
def play_game(env, epsilon): | |
pass | |
if __name__ == '__main__': | |
env = gym.make('FrozenLake-v0') | |
env = wrappers.Monitor(env, 'frozenlake-experiment-Q1', force=True) | |
Q = np.zeros((env.observation_space.n, env.action_space.n)) | |
updateCounts = np.zeros((env.observation_space.n, env.action_space.n)) | |
deltas = [] | |
averageReturn = 0 | |
lastHalfAverage = 0 | |
for episode in xrange(NUM_EPISODES): | |
s = env.reset() | |
biggest_change = 0 | |
while True: | |
a = np.argmax(Q[s, :]) | |
a = random_action(a, env, EPSILON) | |
old_qsa = Q[s, a] | |
s2, r, done, info = env.step(a) | |
if (s2==s): | |
r-=0.01 | |
elif(done and r == 0): | |
r = -1.0 | |
#alpha = (ALPHA/(updateCounts[s, a]+1)) | |
alpha = ALPHA | |
updateCounts[s, a] += 1 | |
a2 = np.argmax(Q[s2, :]) | |
maxNext = Q[s2, a2] | |
Q[s, a] = old_qsa + alpha*(r + GAMMA*maxNext - old_qsa) | |
biggest_change = max(biggest_change, np.abs(old_qsa - Q[s, a])) | |
updateCounts[s, a] = updateCounts[s, a] + 1 | |
s=s2 | |
a=a2 | |
if(done): | |
averageReturn = averageReturn + (r-averageReturn)/(episode+1) | |
EPSILON *= EPSILON_DECAY | |
if (episode+1)%10000 == 0: | |
print "Episode: ", episode+1 | |
print 'Epsilon: ', EPSILON | |
print 'Average Return: ', averageReturn | |
break | |
deltas.append(biggest_change) | |
env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment