Created
July 7, 2017 03:08
-
-
Save qfettes/1dd4500218c81a27c805028a6fd74980 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import scipy | |
import gym | |
from collections import defaultdict | |
from gym import wrappers | |
GAMMA = 0.9 | |
ALPHA = 0.1 | |
NUM_EPISODES = 500000 | |
EPSILON = 1.0 | |
EPSILON_DECAY = 0.9999 | |
def random_action(a, env, eps=0.1): | |
p = np.random.random() | |
if p < (1 - eps): | |
return a | |
else: | |
return env.action_space.sample() | |
def play_game(env, epsilon): | |
pass | |
if __name__ == '__main__': | |
env = gym.make('FrozenLake-v0') | |
env = wrappers.Monitor(env, 'frozenlake-experiment-1', force=True) | |
Q = np.zeros((env.observation_space.n, env.action_space.n)) | |
updateCounts = np.zeros((env.observation_space.n, env.action_space.n)) | |
deltas = [] | |
averageReturn = 0 | |
lastHalfAverage = 0 | |
for episode in xrange(NUM_EPISODES): | |
s = env.reset() | |
biggest_change = 0 | |
while True: | |
a = np.argmax(Q[s, :]) | |
a = random_action(a, env, EPSILON) | |
old_qsa = Q[s, a] | |
s2, r, done, info = env.step(a) | |
#alpha = (ALPHA/(updateCounts[s, a]+1)) | |
alpha = ALPHA | |
updateCounts[s, a] += 1 | |
a2 = np.argmax(Q[s2, :]) | |
maxNext = Q[s2, a2] | |
Q[s, a] = old_qsa + alpha*(r + GAMMA*maxNext - old_qsa) | |
biggest_change = max(biggest_change, np.abs(old_qsa - Q[s, a])) | |
updateCounts[s, a] = updateCounts[s, a] + 1 | |
s=s2 | |
a=a2 | |
if(done): | |
averageReturn = averageReturn + (r-averageReturn)/(episode+1) | |
EPSILON *= EPSILON_DECAY | |
if (episode+1)%10000 == 0: | |
print "Episode: ", episode+1 | |
print 'Epsilon: ', EPSILON | |
print 'Average Return: ', averageReturn | |
break | |
deltas.append(biggest_change) | |
env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment