-
-
Save pszemraj/704315a2f0faf83a0876d39f287b9cd8 to your computer and use it in GitHub Desktop.
Create LAB LUTs for skimage.color.colorconv based on OpenCV Method
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
from scipy.interpolate import interp1d | |
from skimage import img_as_ubyte | |
def build_spline(x, y): | |
"""computes cubic spline coefficients for a function: (xi=i, yi=f[i]), i=0..n | |
Adapted rom OpenCV project. | |
""" | |
func = interp1d(x, y, kind='cubic') | |
xnew = np.linspace(0, 1, x.size * 4) | |
return func(xnew) | |
LAB_CBRT_TAB_SIZE = 1024 | |
GAMMA_TAB_SIZE = 1024 | |
LabCbrtTabScale = LAB_CBRT_TAB_SIZE / 1.5 | |
GammaTabScale = GAMMA_TAB_SIZE | |
XYZ_SHIFT = 12 | |
LAB_SHIFT = XYZ_SHIFT | |
GAMMA_SHIFT = 3 | |
LAB_SHIFT2 = LAB_SHIFT + GAMMA_SHIFT | |
LAB_CBRT_TAB_SIZE_B = (256 * 3 / 2. * (1 << GAMMA_SHIFT)) | |
sRGB2XYZ_D65 = [0.412453, 0.357580, 0.180423, | |
0.212671, 0.715160, 0.072169, | |
0.019334, 0.119193, 0.950227] | |
D65 = [0.950456, 1., 1.088754] | |
def create_lab_tables(): | |
"""Compute lab LUTs | |
Adapted from OpenCV Project. | |
""" | |
f = np.zeros(LAB_CBRT_TAB_SIZE + 1) | |
g = np.zeros(GAMMA_TAB_SIZE + 1) | |
ig = np.zeros(GAMMA_TAB_SIZE + 1) | |
x = np.linspace(0, 1, f.size) * LabCbrtTabScale / LAB_CBRT_TAB_SIZE | |
mask = x < 0.008856 | |
f[mask] = x[mask] * 7.787 + 0.13793103448275862 | |
f[~mask] = np.power(x[~mask], 1 / 3.) | |
lab_cbrt_tab = x #build_spline(x, f) | |
x = np.linspace(0, 1, g.size) | |
mask = x <= 0.04045 | |
g[mask] = x[mask] / 12.92 | |
g[~mask] = np.power((x[~mask] + 0.055) / 1.055, 2.4) | |
mask = x <= 0.0031308 | |
ig[mask] = x[mask] * 12.92 | |
ig[~mask] = 1.055 * np.power(x[~mask], 1 / 2.4) - 0.055 | |
sRGB_gamma_tab = x #build_spline(x, g) | |
sRGB_inv_gamma_tab = x # build_spline(x, ig) | |
x = np.linspace(0, 1, 256) | |
mask = x <= 0.04045 | |
sRGB_gamma_tab_b = np.ones(256) * 255 * (1 << GAMMA_SHIFT) | |
sRGB_gamma_tab_b[mask] *= x[mask] / 12.92 | |
sRGB_gamma_tab_b[~mask] *= np.power((x[~mask] + 0.055) / 1.055, 2.4) | |
sRGB_gamma_tab_b[sRGB_gamma_tab_b > 2 ** 16 - 1] = 2 ** 16 - 1 | |
sRGB_gamma_tab_b = sRGB_gamma_tab_b.astype(np.int32) | |
linear_gamma_tab_b = np.arange(256, dtype=np.int32) * (1 << GAMMA_SHIFT) | |
x = np.arange(LAB_CBRT_TAB_SIZE_B) / (255. * (1 << GAMMA_SHIFT)) | |
mask = x < 0.008856 | |
lab_cbrt_tab_b = np.zeros(LAB_CBRT_TAB_SIZE_B, dtype=np.int32) | |
lab_cbrt_tab_b[mask] = ((1 << LAB_SHIFT2) * | |
(x[mask] * 7.787 + 0.13793103448275862)) | |
lab_cbrt_tab_b[~mask] = (1 << LAB_SHIFT2) * np.power(x[~mask], 1 / 3.) | |
lab_cbrt_tab_b[lab_cbrt_tab_b > 2 ** 16 - 1] = 2 ** 16 - 1 | |
lab_cbrt_tab_b = lab_cbrt_tab_b.astype(np.int32) | |
return (sRGB_gamma_tab, sRGB_inv_gamma_tab, sRGB_gamma_tab_b, | |
linear_gamma_tab_b, lab_cbrt_tab, lab_cbrt_tab_b) | |
(sRGB_gamma_tab, sRGB_inv_gamma_tab, sRGB_gamma_tab_b, | |
linear_gamma_tab_b, lab_cbrt_tab, lab_cbrt_tab_b) = create_lab_tables() | |
@profile | |
def rgb2lab(image, coeffs=None, whitept=None): | |
image = img_as_ubyte(image) | |
blueIdx = 2 # for RGB | |
if coeffs is None: | |
coeffs = sRGB2XYZ_D65 | |
if whitept is None: | |
whitept = D65 | |
scale = [float(1 << LAB_SHIFT) / whitept[0], | |
float(1 << LAB_SHIFT), | |
float(1 << LAB_SHIFT) / whitept[2]] | |
C = np.zeros(9, dtype=np.int32) | |
for i in range(3): | |
j = i * 3 | |
C[j + np.bitwise_xor(blueIdx, 2)] = np.round(coeffs[j] * scale[i]) | |
C[j + 1] = np.round(coeffs[j + 1] * scale[i]) | |
C[j + blueIdx] = np.round(coeffs[j + 2] * scale[i]) | |
assert (C[j] >= 0 and C[j + 1] >= 0 and C[j + 2] >= 0 | |
and C[j] + C[j + 1] + C[j + 2] < 2 * (1 << LAB_SHIFT)) | |
Lscale = (116*255+50)//100 | |
Lshift = -((16*255*(1 << LAB_SHIFT2) + 50) // 100) | |
tab = sRGB_gamma_tab_b | |
def descale(x, n): | |
return (((x) + (1 << ((n)-1))) >> (n)) | |
data = np.take(tab, image) | |
dot = np.einsum('ijk,...k', data, C.reshape(3, 3)) | |
XYZ = descale(dot, LAB_SHIFT) | |
fX = lab_cbrt_tab_b[XYZ[0]] | |
fY = lab_cbrt_tab_b[XYZ[1]] | |
fZ = lab_cbrt_tab_b[XYZ[2]] | |
L = descale((Lscale * fY + Lshift), LAB_SHIFT2) | |
L[L > 255] = 255 | |
offset = 128 * (1 << LAB_SHIFT2) | |
a = descale((500 * (fX - fY) + offset), LAB_SHIFT2) | |
a[a > 255] = 255 | |
b = descale((200 * (fY - fZ) + offset), LAB_SHIFT2) | |
b[b > 255] = 255 | |
image[:, :, 0] = L | |
image[:, :, 1] = a | |
image[:, :, 2] = b | |
return image.astype(np.uint8) | |
import time | |
from skimage import data, color | |
import cv2 | |
image = data.chelsea() | |
t = time.time() | |
lab = color.rgb2lab(image.copy()) | |
print time.time() - t | |
t = time.time() | |
lab2 = rgb2lab(image.copy()) | |
print time.time() - t | |
t = time.time() | |
lab3 = cv2.cvtColor(image.copy(), cv2.cv.CV_RGB2Lab) | |
print time.time() - t | |
rgb2 = cv2.cvtColor(lab2, cv2.cv.CV_Lab2RGB) | |
np.testing.assert_allclose(lab2, lab3, rtol=1) | |
assert np.sum(rgb2.astype(float) - image) / image.size < 0.015 | |
import matplotlib.pyplot as plt | |
plt.subplot(211) | |
plt.imshow(image) | |
plt.subplot(212) | |
plt.imshow(rgb2) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment