Last active
September 1, 2024 20:28
-
-
Save pszemraj/465b4d7e40d6e8f4178a428cc8c733fe to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import logging | |
import os | |
import fire | |
import torch | |
from datasets import load_dataset | |
from huggingface_hub import PyTorchModelHubMixin | |
from torch import nn | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
logging.basicConfig( | |
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" | |
) | |
logger = logging.getLogger(__name__) | |
class QualityModel(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, config): | |
super(QualityModel, self).__init__() | |
self.model = AutoModel.from_pretrained(config["base_model"]) | |
self.dropout = nn.Dropout(config["fc_dropout"]) | |
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"])) | |
def forward(self, input_ids, attention_mask): | |
features = self.model( | |
input_ids=input_ids, attention_mask=attention_mask | |
).last_hidden_state | |
dropped = self.dropout(features) | |
outputs = self.fc(dropped) | |
return torch.softmax(outputs[:, 0, :], dim=1) | |
def get_workers() -> int: | |
"""get num cpus with safety factor""" | |
return int(os.cpu_count() // 2) | |
def get_device_type(model) -> str: | |
"""get the device type a transformers model is loaded on""" | |
device = str(model.device) | |
return device.split(":")[0] | |
def load_model(model_name="nvidia/quality-classifier-deberta", device=None): | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
logger.info(f"Using device: {device}") | |
config = AutoConfig.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = QualityModel.from_pretrained(model_name).to(device) | |
model.eval() | |
return config, tokenizer, model, device | |
def classify_batch(batch, tokenizer, model, config, device, text_column): | |
inputs = tokenizer( | |
batch[text_column], return_tensors="pt", padding="longest", truncation=True | |
).to(device) | |
with torch.no_grad(), torch.autocast(get_device_type(model)): | |
outputs = model(inputs["input_ids"], inputs["attention_mask"]) | |
predicted_classes = torch.argmax(outputs, dim=1) | |
predicted_labels = [ | |
config.id2label[class_idx.item()] for class_idx in predicted_classes | |
] | |
batch["quality_prediction"] = predicted_labels | |
return batch | |
def main( | |
dataset_name: str, | |
text_column: str = "text", | |
model_name: str = "nvidia/quality-classifier-deberta", | |
batch_size: int = 32, | |
): | |
logger.info(f"Loading dataset: {dataset_name}") | |
dataset = load_dataset(dataset_name, num_proc=get_workers()) | |
logger.info(f"Dataset loaded: {dataset}") | |
logger.info(f"Loading model: {model_name}") | |
config, tokenizer, model, device = load_model(model_name) | |
logger.info("Starting inference") | |
classified_dataset = dataset.map( | |
lambda batch: classify_batch( | |
batch, tokenizer, model, config, device, text_column | |
), | |
batched=True, | |
batch_size=batch_size, | |
desc="Classifying texts", | |
) | |
logger.info("Inference complete") | |
logger.info("Saving updated dataset") | |
classified_dataset.save_to_disk("quality_classified_dataset") | |
logger.info("Processing complete!") | |
return classified_dataset | |
if __name__ == "__main__": | |
fire.Fire(main) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment