Created
April 25, 2019 19:26
-
-
Save prassanna-ravishankar/cd4059e1ed544c20c11fdb2cdb40da08 to your computer and use it in GitHub Desktop.
Example Tensorflow code which Trains for a while using the Keras Frontend.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import, division, print_function | |
import os | |
# TensorFlow and tf.keras | |
import tensorflow as tf | |
from tensorflow import keras | |
# Helper libraries | |
import numpy as np | |
import matplotlib.pyplot as plt | |
print ("Hello world") | |
print(tf.__version__) | |
fashion_mnist = keras.datasets.fashion_mnist | |
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() | |
class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', | |
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] | |
train_images = train_images / 255.0 | |
test_images = test_images / 255.0 | |
model = keras.Sequential([ | |
keras.layers.Flatten(input_shape=(28, 28)), | |
keras.layers.Dense(128, activation=tf.nn.relu), | |
keras.layers.Dense(10, activation=tf.nn.softmax) | |
]) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy']) | |
model.fit(train_images, train_labels, epochs=5) | |
test_loss, test_acc = model.evaluate(test_images, test_labels) | |
print('Test accuracy:', test_acc) | |
predictions = model.predict(test_images) | |
def plot_image(i, predictions_array, true_label, img): | |
predictions_array, true_label, img = predictions_array[i], true_label[i], img[i] | |
plt.grid(False) | |
plt.xticks([]) | |
plt.yticks([]) | |
plt.imshow(img, cmap=plt.cm.binary) | |
predicted_label = np.argmax(predictions_array) | |
if predicted_label == true_label: | |
color = 'blue' | |
else: | |
color = 'red' | |
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label], | |
100*np.max(predictions_array), | |
class_names[true_label]), | |
color=color) | |
def plot_value_array(i, predictions_array, true_label): | |
predictions_array, true_label = predictions_array[i], true_label[i] | |
plt.grid(False) | |
plt.xticks([]) | |
plt.yticks([]) | |
thisplot = plt.bar(range(10), predictions_array, color="#777777") | |
plt.ylim([0, 1]) | |
predicted_label = np.argmax(predictions_array) | |
thisplot[predicted_label].set_color('red') | |
thisplot[true_label].set_color('blue') | |
# Plot the first X test images, their predicted label, and the true label | |
# Color correct predictions in blue, incorrect predictions in red | |
num_rows = 5 | |
num_cols = 3 | |
num_images = num_rows*num_cols | |
plt.figure(figsize=(2*2*num_cols, 2*num_rows)) | |
for i in range(num_images): | |
plt.subplot(num_rows, 2*num_cols, 2*i+1) | |
plot_image(i, predictions, test_labels, test_images) | |
plt.subplot(num_rows, 2*num_cols, 2*i+2) | |
plot_value_array(i, predictions, test_labels) | |
plt.show() | |
img = test_images[0] | |
img = (np.expand_dims(img,0)) | |
predictions_single = model.predict(img) | |
plot_value_array(0, predictions_single, test_labels) | |
plt.xticks(range(10), class_names, rotation=45) | |
plt.show() | |
prediction_result = np.argmax(predictions_single[0]) | |
print(prediction_result) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment