Created
April 24, 2017 10:42
-
-
Save pranjal-joshi/4795c2736e893a17b8de3ad49fc2a998 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def eval_loss_and_grads(x): | |
x = x.reshape((1,3,img_nrows,img_ncols)) | |
outs = f_outputs([x]) | |
loss_value = outs[0] | |
if(len(outs[1:])==1): | |
grad_values = outs[1].flatten().astype('float64') | |
else: | |
grad_values = np.array(outs[1:]).flatten().astype('float64') | |
return loss_value,grad_values | |
class Evaluator(object): | |
def __init__(self): | |
self.loss_value = None | |
self.grad_values = None | |
def loss(self,x): | |
assert self.loss_value is None | |
loss_value, grad_values = eval_loss_and_grads(x) | |
self.loss_value = loss_value | |
self.grad_values = grad_values | |
return self.loss_value | |
def grads(self,x): | |
assert self.loss_value is not None | |
grad_values = np.copy(self.grad_values) | |
self.loss_value = None | |
self.grad_values = None | |
return grad_values |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment