Created
April 24, 2017 10:29
-
-
Save pranjal-joshi/37eb5fd2d0b8c9b95daad7195cccad90 to your computer and use it in GitHub Desktop.
VGG-16 Loss calculation functions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def content_loss(base,final): | |
return K.sum(K.square(final-base)) # square error | |
def gram_matrix(x): | |
features = K.batch_flatten(x) #flatten -> converts multidimension matrix to single dimensional array | |
gram = K.dot(features,K.transpose(features)) | |
return gram | |
def style_loss(style,final): | |
s = gram_matrix(style) | |
f = gram_matrix(final) | |
channels = 3 # RGB image | |
size = img_nrows * img_ncols | |
return K.sum(K.square(s-f))/(4.0*(channels**2)*(size**2)) # ** is 'raise to' operator in python. | |
def total_var_loss(x): | |
a = K.square(x[:,:,:img_nrows-1,:img_ncols-1] - x[:,:,1:,:img_ncols-1]) | |
b = K.square(x[:,:,:img_nrows-1,:img_ncols-1] - x[:,:,:img_nrows-1,1:]) | |
return K.sum(K.pow(a+b,1.25)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment