Created
May 13, 2024 09:19
-
-
Save polius/b09fc0453be1b3ed7e5f2199be66e9a5 to your computer and use it in GitHub Desktop.
Generate a CSV file listing all EC2 volumes in an AWS account, along with some cost-saving recommendations.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import csv | |
import boto3 | |
import numpy as np | |
import argparse | |
import threading | |
from datetime import datetime, timedelta, timezone | |
class main: | |
def __init__(self): | |
# Grab parameters | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--profile', required=False, help='AWS profile name ($ aws configure --profile customer)') | |
args = parser.parse_args() | |
# Get the timestamp range | |
self._end_time = datetime.now(timezone.utc).replace(second=0, microsecond=0) | |
self._start_time = (self._end_time - timedelta(days=30)).replace(hour=0, minute=0, second=0, microsecond=0) | |
# Create a session with the specified profile | |
self._session = boto3.Session(profile_name=args.profile) | |
# Start computing | |
self.compute() | |
# Show confirmation message | |
print("Scan completed") | |
def compute(self): | |
# Define headers | |
headers = ['Region','ID','Type','State','Size','Iops','Throughput','Min_IOPS','Avg_IOPS','P95_IOPS','Max_IOPS','Min_Throughput','Avg_Throughput','P95_Throughput','Max_Throughput','Is_Optimal','Optimal_Type','Optimal_IOPS','Optimal_Throughput_MB'] | |
# Write headers into file | |
with open('data.csv', 'w') as csv_file: | |
writer = csv.writer(csv_file) | |
writer.writerow(headers) | |
# Get regions | |
regions = [region['RegionName'] for region in self._session.client('ec2', region_name='us-east-1').describe_regions()['Regions']] | |
for region in regions: | |
# Create boto3 clients | |
ec2_client = self._session.client('ec2', region_name=region) | |
cloudwatch_client = self._session.client('cloudwatch', region_name=region) | |
# Retrieve the list of volumes | |
volumes = ec2_client.describe_volumes() | |
# Compute data | |
data = [] | |
# Iterate over each volume | |
for i, volume in enumerate(volumes['Volumes']): | |
print(f"[{region}] [{i+1}/{len(volumes['Volumes'])}] {volume['VolumeId']} | Type: {volume['VolumeType']} | State: {volume['State']} | Size: {volume['Size']} | Iops: {volume['Iops'] if 'Iops' in volume else '-'} | Throughput: {volume['Throughput'] if 'Throughput' in volume else '-'}") | |
thread_data = {} | |
threads = [ | |
threading.Thread(target=self.__cloudwatch_request, args=(thread_data, cloudwatch_client, 'VolumeReadOps', volume['VolumeId'],)), | |
threading.Thread(target=self.__cloudwatch_request, args=(thread_data, cloudwatch_client, 'VolumeWriteOps', volume['VolumeId'],)), | |
threading.Thread(target=self.__cloudwatch_request, args=(thread_data, cloudwatch_client, 'VolumeReadBytes', volume['VolumeId'],)), | |
threading.Thread(target=self.__cloudwatch_request, args=(thread_data, cloudwatch_client, 'VolumeWriteBytes', volume['VolumeId'],)), | |
] | |
for t in threads: | |
t.start() | |
for t in threads: | |
t.join() | |
read_ops = thread_data['VolumeReadOps'] | |
write_ops = thread_data['VolumeWriteOps'] | |
read_throughput = thread_data['VolumeReadBytes'] | |
write_throughput = thread_data['VolumeWriteBytes'] | |
overall_iops = [(x + y)/300 for x, y in zip(read_ops, write_ops)] | |
overall_throughput = [(x + y)/300 for x, y in zip(read_throughput, write_throughput)] | |
min_iops = round(min(overall_iops)) if len(overall_iops) > 0 else 0 | |
avg_iops = round(sum(overall_iops) / len(overall_iops)) if len(overall_iops) > 0 else 0 | |
p95_iops = round(np.percentile(np.sort(overall_iops), 95)) if len(overall_iops) > 0 else 0 | |
max_iops = round(max(overall_iops)) if len(overall_iops) > 0 else 0 | |
min_throughput = round(min(overall_throughput) / 1024**2) if len(overall_throughput) > 0 else 0 | |
avg_throughput = round(sum(overall_throughput) / len(overall_throughput) / 1024**2) if len(overall_throughput) > 0 else 0 | |
p95_throughput = round(np.percentile(np.sort(overall_throughput), 95) / 1024**2) if len(overall_throughput) > 0 else 0 | |
max_throughput = round(max(overall_throughput) / 1024**2) if len(overall_throughput) > 0 else 0 | |
is_optimal = 1 | |
optimal_type = 'gp3' | |
optimal_iops = 3000 | |
optimal_throughput = 125 | |
if volume['VolumeType'] == 'gp2': | |
is_optimal = 0 | |
optimal_iops = max(3000, p95_iops) | |
optimal_throughput = max(125, p95_throughput) | |
elif volume['VolumeType'] == 'gp3': | |
# Check over-provisioned | |
if volume['Iops'] > 3000 and p95_iops < 3000: | |
is_optimal = 0 | |
if volume['Throughput'] > 125 and p95_throughput < 125: | |
is_optimal = 0 | |
# Check under-provisioned | |
if p95_iops > volume['Iops']: | |
is_optimal = 0 | |
optimal_iops = max(p95_iops, 3000) | |
if p95_throughput > volume['Throughput']: | |
is_optimal = 0 | |
optimal_throughput = max(p95_throughput, 125) | |
elif volume['VolumeType'] in ['io1','io2']: | |
# Check if gp3 would be better | |
if p95_iops <= 16000: | |
is_optimal = 0 | |
optimal_iops = max(3000, p95_iops) | |
optimal_throughput = max(125, p95_throughput) | |
else: | |
# Check over-provisioned | |
if volume['Iops'] > 3000 and p95_iops < 3000: | |
is_optimal = 0 | |
if volume['Throughput'] > 125 and p95_throughput < 125: | |
is_optimal = 0 | |
# Check under-provisioned | |
if p95_iops > volume['Iops']: | |
is_optimal = 0 | |
optimal_iops = max(p95_iops, 3000) | |
if p95_throughput > volume['Throughput']: | |
is_optimal = 0 | |
optimal_throughput = max(p95_throughput, 125) | |
data.append([ | |
region, | |
volume['VolumeId'], | |
volume['VolumeType'], | |
volume['State'], | |
volume['Size'], | |
volume['Iops'] if 'Iops' in volume else '', | |
volume['Throughput'] if 'Throughput' in volume else '', | |
min_iops, | |
avg_iops, | |
p95_iops, | |
max_iops, | |
min_throughput, | |
avg_throughput, | |
p95_throughput, | |
max_throughput, | |
is_optimal, | |
optimal_type, | |
optimal_iops, | |
optimal_throughput, | |
]) | |
# Write region data into CSV file | |
with open('data.csv', 'a') as csv_file: | |
writer = csv.writer(csv_file) | |
writer.writerows(data) | |
def __cloudwatch_request(self, data, cloudwatch_client, metric_name, volume_id): | |
response = cloudwatch_client.get_metric_data( | |
MetricDataQueries=[ | |
{ | |
'Id': 'cloudwatch_metric', | |
'MetricStat': { | |
'Metric': { | |
'Namespace': 'AWS/EBS', | |
'MetricName': metric_name, | |
'Dimensions': [ | |
{ | |
'Name': 'VolumeId', | |
'Value': volume_id | |
}, | |
] | |
}, | |
'Period': 300, | |
'Stat': 'Sum', | |
'Unit': 'Bytes' if metric_name in ['VolumeReadBytes','VolumeWriteBytes'] else 'Count' | |
}, | |
'ReturnData': True | |
} | |
], | |
StartTime=self._start_time, | |
EndTime=self._end_time | |
) | |
data[metric_name] = response['MetricDataResults'][0]['Values'] | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment