Last active
May 25, 2025 14:47
-
-
Save plushycat/0aba455f64e7eb61ae7ff28399607e2b to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
def locally_weighted_regression(x, X, y, tau): | |
w = np.exp(-np.sum((X - x)**2, axis=1) / (2 * tau**2)) | |
W = np.diag(w) | |
theta = np.linalg.pinv(X.T @ W @ X) @ X.T @ W @ y | |
return x @ theta | |
# Data | |
np.random.seed(42) | |
X = np.linspace(0, 2 * np.pi, 100) | |
y = np.sin(X) + 0.1 * np.random.randn(100) | |
X_bias = np.c_[np.ones(X.shape), X] | |
# Prediction | |
x_test = np.linspace(0, 2 * np.pi, 200) | |
x_test_bias = np.c_[np.ones(x_test.shape), x_test] | |
tau = 0.5 | |
y_pred = np.array([locally_weighted_regression(xi, X_bias, y, tau) for xi in x_test_bias]) | |
# Plotting | |
plt.figure(figsize=(10, 6)) | |
plt.scatter(X, y, color='red', label='Training Data', alpha=0.7) | |
plt.plot(x_test, y_pred, color='blue', label=f'LWR Fit (tau={tau})', linewidth=2) | |
plt.xlabel('X') | |
plt.ylabel('y') | |
plt.title('Locally Weighted Regression') | |
plt.legend() | |
plt.grid(alpha=0.3) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment