-
-
Save pavolloffay/b60055bca068d220f78b to your computer and use it in GitHub Desktop.
Implementation of Holt-Winters algorithms in Python 2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#The MIT License (MIT) | |
# | |
#Copyright (c) 2015 Andre Queiroz | |
# | |
#Permission is hereby granted, free of charge, to any person obtaining a copy | |
#of this software and associated documentation files (the "Software"), to deal | |
#in the Software without restriction, including without limitation the rights | |
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
#copies of the Software, and to permit persons to whom the Software is | |
#furnished to do so, subject to the following conditions: | |
# | |
#The above copyright notice and this permission notice shall be included in | |
#all copies or substantial portions of the Software. | |
# | |
#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
#THE SOFTWARE. | |
# | |
# Holt-Winters algorithms to forecasting | |
# Coded in Python 2 by: Andre Queiroz | |
# Description: This module contains three exponential smoothing algorithms. They are Holt's linear trend method and Holt-Winters seasonal methods (additive and multiplicative). | |
# References: | |
# Hyndman, R. J.; Athanasopoulos, G. (2013) Forecasting: principles and practice. http://otexts.com/fpp/. Accessed on 07/03/2013. | |
# Byrd, R. H.; Lu, P.; Nocedal, J. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208. | |
from __future__ import division | |
from sys import exit | |
from math import sqrt | |
from numpy import array | |
from scipy.optimize import fmin_l_bfgs_b | |
def RMSE(params, *args): | |
Y = args[0] | |
type = args[1] | |
rmse = 0 | |
if type == 'linear': | |
alpha, beta = params | |
a = [Y[0]] | |
b = [Y[1] - Y[0]] | |
y = [a[0] + b[0]] | |
for i in range(len(Y)): | |
a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
y.append(a[i + 1] + b[i + 1]) | |
else: | |
alpha, beta, gamma = params | |
m = args[2] | |
a = [sum(Y[0:m]) / float(m)] | |
b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] | |
if type == 'additive': | |
s = [Y[i] - a[0] for i in range(m)] | |
y = [a[0] + b[0] + s[0]] | |
for i in range(len(Y)): | |
a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i]) | |
y.append(a[i + 1] + b[i + 1] + s[i + 1]) | |
elif type == 'multiplicative': | |
s = [Y[i] / a[0] for i in range(m)] | |
y = [(a[0] + b[0]) * s[0]] | |
for i in range(len(Y)): | |
a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i]) | |
y.append((a[i + 1] + b[i + 1]) * s[i + 1]) | |
else: | |
exit('Type must be either linear, additive or multiplicative') | |
rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y, y[:-1])]) / len(Y)) | |
return rmse | |
def linear(x, fc, alpha = None, beta = None): | |
Y = x[:] | |
if (alpha == None or beta == None): | |
initial_values = array([0.3, 0.1]) | |
boundaries = [(0, 1), (0, 1)] | |
type = 'linear' | |
parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type), bounds = boundaries, approx_grad = True) | |
alpha, beta = parameters[0] | |
a = [Y[0]] | |
b = [Y[1] - Y[0]] | |
y = [a[0] + b[0]] | |
rmse = 0 | |
for i in range(len(Y) + fc): | |
if i == len(Y): | |
Y.append(a[-1] + b[-1]) | |
a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
y.append(a[i + 1] + b[i + 1]) | |
rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) | |
return Y[-fc:], alpha, beta, rmse | |
def additive(x, m, fc, alpha = None, beta = None, gamma = None): | |
Y = x[:] | |
if (alpha == None or beta == None or gamma == None): | |
initial_values = array([0.3, 0.1, 0.1]) | |
boundaries = [(0, 1), (0, 1), (0, 1)] | |
type = 'additive' | |
parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True) | |
alpha, beta, gamma = parameters[0] | |
a = [sum(Y[0:m]) / float(m)] | |
b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] | |
s = [Y[i] - a[0] for i in range(m)] | |
y = [a[0] + b[0] + s[0]] | |
rmse = 0 | |
for i in range(len(Y) + fc): | |
if i == len(Y): | |
Y.append(a[-1] + b[-1] + s[-m]) | |
a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i]) | |
y.append(a[i + 1] + b[i + 1] + s[i + 1]) | |
rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) | |
return Y[-fc:], alpha, beta, gamma, rmse | |
def multiplicative(x, m, fc, alpha = None, beta = None, gamma = None): | |
Y = x[:] | |
if (alpha == None or beta == None or gamma == None): | |
initial_values = array([0.0, 1.0, 0.0]) | |
boundaries = [(0, 1), (0, 1), (0, 1)] | |
type = 'multiplicative' | |
parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True) | |
alpha, beta, gamma = parameters[0] | |
a = [sum(Y[0:m]) / float(m)] | |
b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] | |
s = [Y[i] / a[0] for i in range(m)] | |
y = [(a[0] + b[0]) * s[0]] | |
rmse = 0 | |
for i in range(len(Y) + fc): | |
if i == len(Y): | |
Y.append((a[-1] + b[-1]) * s[-m]) | |
a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i])) | |
b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) | |
s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i]) | |
y.append((a[i + 1] + b[i + 1]) * s[i + 1]) | |
rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) | |
return Y[-fc:], alpha, beta, gamma, rmse |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment